Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) ...Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.展开更多
Matric suction is an important state variable required for the assessment of unsaturated soil properties.Tensiometers are commonly used for direct matric suction measurement but have a limited measuring range up to 90...Matric suction is an important state variable required for the assessment of unsaturated soil properties.Tensiometers are commonly used for direct matric suction measurement but have a limited measuring range up to 90 kPa due to the cavitation problem.Osmotic tensiometer(OT)can improve the measuring range of tensiometers by increasing the osmotic pressure of water to avoid the cavitation.However,the long-term water pressure decay that appeared in OTs caused a gradual decrease in their measuring range.In this study,crosslinked poly(acrylamide-co-acrylic acid)potassium salt(PAM-co-PAAK)was used for the preparation of OTs(five in total)to explore the mechanism of water pressure decay of OTs.The maximum water pressure in the OT versus the volume fraction of polymer filled in the OT was described based on the Flory-Huggins polymer theories and validated using WP4C dewpoint hygrometer.The long-term pressure decay of OT-1,OT-2,and OT-3 was observed for 130 d and constant pressures were found for OT-1 and OT-2,indicating that the pressure decay of OT was mainly caused by the stress relaxation of the polymer hydrogels,and standard linear solid(SLS)rheological model was appropriate to fit the decay data.For OT-1,OT-2 and OT-3,the theoretical osmotic pressure that was calculated based on the mass of retrieved polymer from OTs after 130-d pressure observation was higher than the actual osmotic pressure as observed,indicating that polymer leakage cannot explain the pressure decay of the OT.The ultravioletevisible(UVevisible)spectrophotometry examined the change in polymer concentrations in the water containers of OT-4 and OT-5 and demonstrated that there was no increase in polymer leakage during the period of pressure decay of OT-4 and OT-5.As a result,the pressure decay of OT was not caused by polymer leakage.The results of this research suggested that the viscoelastic properties of polymers should be taken into consideration in further OT development.展开更多
The morphological, dynamic and rheological characteristics in the viscoelastic phase separation(VPS) of sheared polymer solutions are investigated by three-dimensional(3D) numerical simulations of viscoelastic mod...The morphological, dynamic and rheological characteristics in the viscoelastic phase separation(VPS) of sheared polymer solutions are investigated by three-dimensional(3D) numerical simulations of viscoelastic model. The simulations are accelerated by graphic process unit(GPU) to break through the limitation of computation power. Firstly, the morphological and dynamic characteristics of VPS under shear are presented by comparing with those in classic phase separation(CPS). The results show that the phase inversion and phase shrink take place in VPS under shear. Then, the roles of bulk and shear relaxation moduli in VPS are investigated in details. The bulk relaxation modulus slows down the phase separation process under shear, but not affects the dynamic path of VPS. The dynamic path can be divided into three stages: freezing stage, growth stage and stable stage. The second overshoot phenomenon in the shear stress is observed, and explained by the breakdown and reform of string structures. The shear modulus affects morphology evolution in the late stage of VPS under shear.展开更多
基金The authors gratefully a.cknowledge financial supportfrom th6 Natiol-al Natural Science Foundatiol- of CI-h-a. The number of
文摘Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.
文摘Matric suction is an important state variable required for the assessment of unsaturated soil properties.Tensiometers are commonly used for direct matric suction measurement but have a limited measuring range up to 90 kPa due to the cavitation problem.Osmotic tensiometer(OT)can improve the measuring range of tensiometers by increasing the osmotic pressure of water to avoid the cavitation.However,the long-term water pressure decay that appeared in OTs caused a gradual decrease in their measuring range.In this study,crosslinked poly(acrylamide-co-acrylic acid)potassium salt(PAM-co-PAAK)was used for the preparation of OTs(five in total)to explore the mechanism of water pressure decay of OTs.The maximum water pressure in the OT versus the volume fraction of polymer filled in the OT was described based on the Flory-Huggins polymer theories and validated using WP4C dewpoint hygrometer.The long-term pressure decay of OT-1,OT-2,and OT-3 was observed for 130 d and constant pressures were found for OT-1 and OT-2,indicating that the pressure decay of OT was mainly caused by the stress relaxation of the polymer hydrogels,and standard linear solid(SLS)rheological model was appropriate to fit the decay data.For OT-1,OT-2 and OT-3,the theoretical osmotic pressure that was calculated based on the mass of retrieved polymer from OTs after 130-d pressure observation was higher than the actual osmotic pressure as observed,indicating that polymer leakage cannot explain the pressure decay of the OT.The ultravioletevisible(UVevisible)spectrophotometry examined the change in polymer concentrations in the water containers of OT-4 and OT-5 and demonstrated that there was no increase in polymer leakage during the period of pressure decay of OT-4 and OT-5.As a result,the pressure decay of OT was not caused by polymer leakage.The results of this research suggested that the viscoelastic properties of polymers should be taken into consideration in further OT development.
基金financially supported by the Around Five Top Priorities of"One-Three-Five"Strategic Planning,CNIC(No.CNIC_PY-1404)
文摘The morphological, dynamic and rheological characteristics in the viscoelastic phase separation(VPS) of sheared polymer solutions are investigated by three-dimensional(3D) numerical simulations of viscoelastic model. The simulations are accelerated by graphic process unit(GPU) to break through the limitation of computation power. Firstly, the morphological and dynamic characteristics of VPS under shear are presented by comparing with those in classic phase separation(CPS). The results show that the phase inversion and phase shrink take place in VPS under shear. Then, the roles of bulk and shear relaxation moduli in VPS are investigated in details. The bulk relaxation modulus slows down the phase separation process under shear, but not affects the dynamic path of VPS. The dynamic path can be divided into three stages: freezing stage, growth stage and stable stage. The second overshoot phenomenon in the shear stress is observed, and explained by the breakdown and reform of string structures. The shear modulus affects morphology evolution in the late stage of VPS under shear.