期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical computation and analysis of unsteady viscous flow around autonomous underwater vehicle with propellers based on sliding mesh 被引量:4
1
作者 高富东 潘存云 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第4期944-952,共9页
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele... The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs. 展开更多
关键词 computational fluid dynamics sliding mesh wheel propeller autonomous underwater vehicle viscous flow field
下载PDF
Analysis of the Caudal Vortices Evolvement around Flapping Foil 被引量:2
2
作者 Wang Zhi-dong Zhang Xiao-qing +1 位作者 Su Yu-min Xu Yu-ru 《Journal of Bionic Engineering》 SCIE EI CSCD 2005年第4期195-201,共7页
The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different ... The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed. 展开更多
关键词 FOIL viscous flow field caudal vortices
下载PDF
2A14-T6铝合金搅拌摩擦焊温度场及黏流层数值模拟分析 被引量:8
3
作者 马核 田志杰 +3 位作者 熊林玉 颜旭 曹学敏 张彦华 《航空制造技术》 2018年第8期55-61,共7页
针对2A14铝合金搅拌摩擦焊过程,基于CEL数值模拟方法,采用Pressure Independ Multiyield Material模型,进行了不同搅拌头旋转速度与焊接速度条件下温度场有限元模拟分析。根据温度场分布分析了不同工艺条件下搅拌头前端黏流层厚度变化... 针对2A14铝合金搅拌摩擦焊过程,基于CEL数值模拟方法,采用Pressure Independ Multiyield Material模型,进行了不同搅拌头旋转速度与焊接速度条件下温度场有限元模拟分析。根据温度场分布分析了不同工艺条件下搅拌头前端黏流层厚度变化规律。依据搅拌摩擦焊过程中流变层工艺要求与黏流层模拟厚度,预测了不同工艺条件下的焊接质量,进而提出了2A14铝合金搅拌摩擦焊工艺参数控制准则。 展开更多
关键词 搅拌摩擦焊 温度场 Pressure Independ Multiyield Material模型 黏流层 数值模拟
下载PDF
Method to Calculate Resistance of High-Speed Displacement Ship Taking the Effect of Dynamic Sinkage and Trim and Fluid Viscosity into Account 被引量:8
4
作者 姚朝帮 董文才 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第4期421-426,共6页
A method is presented to calculate the resistance of a high-speed displacement ship taking the effect of sinkage and trim and viscosity of fluid into account.A free surface flow field is evaluated by solving Reynolds ... A method is presented to calculate the resistance of a high-speed displacement ship taking the effect of sinkage and trim and viscosity of fluid into account.A free surface flow field is evaluated by solving Reynolds averaged Navier-Stokes(RANS) equations with volume of fluid(VoF) method.The sinkage and trim are computed by equating the vertical force and pitching moment to the hydrostatic restoring force and moment.The software Fluent,Maxsurf and MATLAB are used to implement this method.With dynamic mesh being used,the position of a ship is updated by the motion of "ship plus boundary layer" grid zone.The hull factors are introduced for fast calculating the running attitude of a ship.The method has been applied to the ship model INSEAN2340 for different Froude numbers and is found to be efficient for evaluating the flow field,resistance,sinkage and trim. 展开更多
关键词 Reynolds averaged Navier-Stokes (RANS) equations ship resistance hydrostatic equilibrium equations of ship viscous wave-making flow field dynamic sinkage and trim hull factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部