This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Bo...This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow. Dimensional analysis indicates that electric-viscous force depends on three factors: (1) Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state, (2) profile function describing the distribution profile of electro-viscous force in channel section, and (3) coupling coefficient reflecting behavior of arnplitude damping and phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number (Re = wh^2/v). Flow-induced electric field varies very slowly with Re when Re 〈 1, and rapidly decreases when Re 〉 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.展开更多
Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wa...Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.展开更多
Either potential flow or viscous flow based model may be flawed for numerical wave simulations.The two-way coupling of potential and viscous flow models with the domain decomposition utilizing respective strengths has...Either potential flow or viscous flow based model may be flawed for numerical wave simulations.The two-way coupling of potential and viscous flow models with the domain decomposition utilizing respective strengths has been a trending research topic.In contrast to existing literatures in which closed source potential models were used,the widely used open source OceanWave3D,OpenFOAM-v2012 are used in the present research.An innovative overlapping two-way coupling strategy is developed utilizing the ghost points in OceanWave3D.To guarantee computational stability,a relaxation zone used both for outlet damping and data transfer is built over the overlapping region in OceanWave3D.The free surface elevation in the relaxation zone is directly probed in OpenFOAM while the velocity potential is indirectly built upon its temporal variation which is calculated by the free surface boundary condition using the probed velocity.Strong coupling is achieved based on the fourth-order Runge-Kutta(RK)algorithm.Both two-and three-dimensional tests including linear,nonlinear,irregular,and multi-directional irregular waves,are conducted.The effectiveness of the coupling procedure in bidirectional data transfer is fully demonstrated,and the model is validated to be accurate and efficient,thus providing a competitive alternative for ocean wave simulations.展开更多
Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull...Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.展开更多
波浪能是海洋可再生能源中储量最为丰富的一种,而振荡水柱式(oscillating water column,OWC)波浪能发电装置是目前技术成熟度最高的波浪能装置类型之一。OWC数值模拟大部分基于计算流体力学(computational fluid dynamics,CFD)方法,主...波浪能是海洋可再生能源中储量最为丰富的一种,而振荡水柱式(oscillating water column,OWC)波浪能发电装置是目前技术成熟度最高的波浪能装置类型之一。OWC数值模拟大部分基于计算流体力学(computational fluid dynamics,CFD)方法,主要用于装置的结构参数优化设计及动力学响应分析。为提高OWC的数值计算效率,便于开展发电装置的控制设计与优化,提出一种面向控制的OWC波浪能装置等效数值模型,并完成不同工况下的水池试验验证。该数值模型基于线性势流理论和Cummins方法,将振荡水柱等效为和水同密度刚体,并将动力输出装置(power take-off,PTO)和黏性效应等效为线性阻尼系数。通过对比数值模拟和水池试验结果,可以发现该模型能较好地预测规则波、不规则波与不同PTO下的OWC自由液面及功率输出等动态特性。在此基础上,完成OWC装置闭锁控制设计,并对比分析OWC的俘能效率。研究发现,该等效数值模型可有效提高计算效率,能较准确地预测OWC自由液面动态过程及功率输出。展开更多
Numerical simulation tools based on potential-flow theory and/or Morison’s equation are widely used for predicting the hydrodynamic responses of floating offshore wind platforms.In general,these simplified approaches...Numerical simulation tools based on potential-flow theory and/or Morison’s equation are widely used for predicting the hydrodynamic responses of floating offshore wind platforms.In general,these simplified approaches are used for the analysis under operational conditions,albeit with a carefully selected approach to account for viscous effects.Nevertheless,due to the limit hydrodynamic modelling to linear and weakly nonlinear models,these approaches severely underpredict the low-frequency nonlinear wave loads and dynamic responses of a semisubmersible.They may not capture important nonlinearities in severe sea states.For the prediction of wave-induced motions and loads on a semisubmersible,this work systematically compares a fully nonlinear viscous-flow solver and a hybrid model combining the potential-flow theory with Morison-drag loads in steep waves.Results show that when nonlinear phenomena are not dominant,the results obtained by the hybrid model and the high-fidelity method show reasonable agreement,while larger discrepancies occur for highly nonlinear regular waves.Specifically,regular waves with various steepness over different frequencies are focused in the present study,which supplements the understanding in applicability of these two groups of method.展开更多
This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al...This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al.,2022),this paper studies the source of longitudinal field at solid boundary,caused by the on-wall kinematic and viscous dynamic coupling of longitudinal and transverse processes.We find that at this situation the easiest choice for the two independent thermodynamic variables is the dimensionless pressure P and temperature T.The two-level structure of boundary dynamics of longitudinal field is obtained by applying the continuity equation and its normal derivative to the surface.We show that the boundary dilatation flux represents faithfully the boundary production of vortex sound and entropy sound,and the mutual generation mechanism of the longitudinal and transverse fields on the boundary does not occur symmetrically"at the samc level,but appears along a zigzag route.At the first level,it is the pressure gradient that generates vorticity unidirectionally;while at the second level,it is the vorticity that generates dilatation unidirectionally.展开更多
This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics...This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics,because they dominate not only various complex viscous and heat-conducting gas flows but also their associated longitudinal waves,including aero-generated sound.Current aeroacoustics theory has been developing in a manner quite independently of gas dynamics;it is based on the advective wave equations for thermodynamic variables,say the exact Phillips equation of relative disturbance pressure as a representative one.However,these equations do not cover the fluid flow that generates and propagates sound waves.In using them,one has to assume simplified base-flow models,which we argue is the main theoretical obstacle to identifying sound source and achieving effective noise control.Instead,we show that the Phillips equation and alike is nothing but the first integral of the dilatation equation that also governs the longitudinal part of the flow field.Therefore,we conclude that modern aeroacoustics should merge back into the general unsteady gas dynamics as a special branch of it,with dilatation of multiple sources being a new additional and sharper sound variable.展开更多
A lattice Boltzmann method is developed for modeling viscous elementary flows.An adjustable source term is added to the lattice Boltzmann equation,which can be tuned to model different elementary flow features like a ...A lattice Boltzmann method is developed for modeling viscous elementary flows.An adjustable source term is added to the lattice Boltzmann equation,which can be tuned to model different elementary flow features like a doublet or a point source of any strength,including a negative source(sink).The added source term is dimensionally consistent with the lattice Boltzmann equation.The proposed model has many practical applications,as it can be used in the framework of the potential flow theory of viscous and viscoelastic fluids.The model can be easily extended to the three dimensional case.The model is verified by comparing its results with the analytical solution for some benchmark problems.The results are in good agreement with the analytical solution of the potential flow theory.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10472036)
文摘This paper presents an analytical solution to periodical streaming potential, flow-induced electric field and velocity of periodical pressure-driven flows in twodimensional uniform microchannel based on the Poisson-Boltzmann equations for electric double layer and Navier-Stokes equation for liquid flow. Dimensional analysis indicates that electric-viscous force depends on three factors: (1) Electric-viscous number representing a ratio between maximum of electric-viscous force and pressure gradient in a steady state, (2) profile function describing the distribution profile of electro-viscous force in channel section, and (3) coupling coefficient reflecting behavior of arnplitude damping and phase offset of electro-viscous force. Analytical results indicate that flow-induced electric field and flow velocity depend on frequency Reynolds number (Re = wh^2/v). Flow-induced electric field varies very slowly with Re when Re 〈 1, and rapidly decreases when Re 〉 1. Electro-viscous effect on flow-induced electric field and flow velocity are very significant when the rate of the channel width to the thickness of electric double layer is small.
基金the National Natural Science Foundation of China(Grant Nos.51909027 and 51679035),the Project of Educational Commission of Liaoning Province(Grant No.L201601),the High-Level Innovation and Entrepreneurship Team of Liaoning Province(Grant No.XLYC1908027),the Fundamental Research Funds for the Central Universities(Grant No.DUT2017TB05).
文摘Numerical simulations on focused wave propagation are carried out by using three types of numerical models,including the linear potential flow,the nonlinear potential flow and the viscous fluid flow models.The wave-wave interaction of the focused wave group with different frequency bands and input wave amplitudes is examined,by which the influence of free surface nonlinearity and fluid viscosity on the related phenomenon of focused wave is investigated.The significant influence of free surface nonlinearity on the characteristics of focused wave can be observed,including the increased focused wave crest,delayed focused time and downstream shift of focused position with the increase of input amplitude.It can plot the evident difference between the results of the nonlinear potential flow and linear potential flow models.However,only a little discrepancy between the nonlinear potential flow and viscous fluid flow models can be observed,implying the insignificant effect of fluid viscosity on focused wave behavior.Therefore,the nonlinear potential flow model is recommended for simulating the non-breaking focused wave problem in this study.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52101324,52131102,51879159 and 52131102)the National Key Research and Development Program of China(Grant No.2019YFB1704200).
文摘Either potential flow or viscous flow based model may be flawed for numerical wave simulations.The two-way coupling of potential and viscous flow models with the domain decomposition utilizing respective strengths has been a trending research topic.In contrast to existing literatures in which closed source potential models were used,the widely used open source OceanWave3D,OpenFOAM-v2012 are used in the present research.An innovative overlapping two-way coupling strategy is developed utilizing the ghost points in OceanWave3D.To guarantee computational stability,a relaxation zone used both for outlet damping and data transfer is built over the overlapping region in OceanWave3D.The free surface elevation in the relaxation zone is directly probed in OpenFOAM while the velocity potential is indirectly built upon its temporal variation which is calculated by the free surface boundary condition using the probed velocity.Strong coupling is achieved based on the fourth-order Runge-Kutta(RK)algorithm.Both two-and three-dimensional tests including linear,nonlinear,irregular,and multi-directional irregular waves,are conducted.The effectiveness of the coupling procedure in bidirectional data transfer is fully demonstrated,and the model is validated to be accurate and efficient,thus providing a competitive alternative for ocean wave simulations.
基金The research was financially supported by the National Natural Science Foundation of China for Youth(Grant No.51609169)Guangxi Science and Technology Major Project(Grant No.Guike AA17292007)+2 种基金the National Key R&D Program of China(Grant No.2018YFC0310502)National Natural Science Foundation of China(Grant No.51779173)China Scholarship Council(CSC).
文摘Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.
文摘Numerical simulation tools based on potential-flow theory and/or Morison’s equation are widely used for predicting the hydrodynamic responses of floating offshore wind platforms.In general,these simplified approaches are used for the analysis under operational conditions,albeit with a carefully selected approach to account for viscous effects.Nevertheless,due to the limit hydrodynamic modelling to linear and weakly nonlinear models,these approaches severely underpredict the low-frequency nonlinear wave loads and dynamic responses of a semisubmersible.They may not capture important nonlinearities in severe sea states.For the prediction of wave-induced motions and loads on a semisubmersible,this work systematically compares a fully nonlinear viscous-flow solver and a hybrid model combining the potential-flow theory with Morison-drag loads in steep waves.Results show that when nonlinear phenomena are not dominant,the results obtained by the hybrid model and the high-fidelity method show reasonable agreement,while larger discrepancies occur for highly nonlinear regular waves.Specifically,regular waves with various steepness over different frequencies are focused in the present study,which supplements the understanding in applicability of these two groups of method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102365,91752202,11472016,11621202,and 12272371).
文摘This work attempts to extend the fundamental theory for classic gas dynamics to viscous compressible flow,of which aeroacoustics will naturally be a special branch.As a continuation of Part I.Unbounded fluid(Mao et al.,2022),this paper studies the source of longitudinal field at solid boundary,caused by the on-wall kinematic and viscous dynamic coupling of longitudinal and transverse processes.We find that at this situation the easiest choice for the two independent thermodynamic variables is the dimensionless pressure P and temperature T.The two-level structure of boundary dynamics of longitudinal field is obtained by applying the continuity equation and its normal derivative to the surface.We show that the boundary dilatation flux represents faithfully the boundary production of vortex sound and entropy sound,and the mutual generation mechanism of the longitudinal and transverse fields on the boundary does not occur symmetrically"at the samc level,but appears along a zigzag route.At the first level,it is the pressure gradient that generates vorticity unidirectionally;while at the second level,it is the vorticity that generates dilatation unidirectionally.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102365,91752202 and 11472016)Luoqin Liu was supported by the Hundred Talents Program of the Chinese Academy of Sciences(CAS).
文摘This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics,because they dominate not only various complex viscous and heat-conducting gas flows but also their associated longitudinal waves,including aero-generated sound.Current aeroacoustics theory has been developing in a manner quite independently of gas dynamics;it is based on the advective wave equations for thermodynamic variables,say the exact Phillips equation of relative disturbance pressure as a representative one.However,these equations do not cover the fluid flow that generates and propagates sound waves.In using them,one has to assume simplified base-flow models,which we argue is the main theoretical obstacle to identifying sound source and achieving effective noise control.Instead,we show that the Phillips equation and alike is nothing but the first integral of the dilatation equation that also governs the longitudinal part of the flow field.Therefore,we conclude that modern aeroacoustics should merge back into the general unsteady gas dynamics as a special branch of it,with dilatation of multiple sources being a new additional and sharper sound variable.
文摘A lattice Boltzmann method is developed for modeling viscous elementary flows.An adjustable source term is added to the lattice Boltzmann equation,which can be tuned to model different elementary flow features like a doublet or a point source of any strength,including a negative source(sink).The added source term is dimensionally consistent with the lattice Boltzmann equation.The proposed model has many practical applications,as it can be used in the framework of the potential flow theory of viscous and viscoelastic fluids.The model can be easily extended to the three dimensional case.The model is verified by comparing its results with the analytical solution for some benchmark problems.The results are in good agreement with the analytical solution of the potential flow theory.