[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were cho...[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.展开更多
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
The non-linear relationships between the contents of ginsenoside Rg 1, Rb 1, Rd and Panax notoginseng saponins(PNS) in Panax notoginseng root herb and the near infrared(NIR) diffuse reflectance spectra of the herb wer...The non-linear relationships between the contents of ginsenoside Rg 1, Rb 1, Rd and Panax notoginseng saponins(PNS) in Panax notoginseng root herb and the near infrared(NIR) diffuse reflectance spectra of the herb were established by means of artificial neural networks(ANNs). Four three-layered perception feed-forward networks were trained with an error back-propagation algorithm. The significant principal components of the NIR spectral data matrix were utilized as the input of the networks. The networks architecture and parameters were selected so as to offer less prediction errors. Relative prediction errors for Rg 1, Rb 1, Rd and PNS obtained with the optimum ANN models were 8.99%, 6.54%, 8.29%, and 5.17%, respectively, which were superior to those obtained with PLSR methods. It is verified that ANN is a suitable approach to model this complex non-linearity. The developed method is fast, non-destructive and accurate and it provides a new efficient approach for determining the active components in the complex system of natural herbs.展开更多
Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the ...Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.展开更多
This study investigated the development of a novel approach to surface characterization of drug poly- morphism and the extension of the capabilities of this method to perform 'real time' in situ measure- ments. This...This study investigated the development of a novel approach to surface characterization of drug poly- morphism and the extension of the capabilities of this method to perform 'real time' in situ measure- ments. This was achieved using diffuse reflectance visible (DRV) spectroscopy and dye deposition, using the pH sensitive dye, thymol blue (TB). Two polymorphs, SFN-β and SFN-γ, of the drug substance sulfanilamide (SFN) were examined. The interaction of adsorbed dye with polymorphs showed different behavior, and thus reported different DRV spectra. Consideration of the acid/base properties of the morphological forms of the drug molecule provided a rationalization of the mechanism of differential coloration by indicator dyes. The kinetics of the polymorphic transformation of SFN polymorphs was monitored using treatment with TB dye and DRV spectroscopy. The thermally-induced transformation fitted a first-order solid-state kinetic model (R2=0.992), giving a rate constant of 2.43 × 10^- 2 s 1.展开更多
Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-...Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.展开更多
In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the wat...In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.展开更多
Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work...Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.展开更多
Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2w...Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.展开更多
The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al...The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.展开更多
A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective e...A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective enrichment of fsDNA was proved by comparing the adsorption efficiency of bovine serum albumin,tyrosine and tryptophan,and the low adsorption background of TiO2 was illustrated by comparing the spectra of four commonly-used inorganic adsorbents(alkaline aluminium oxide,neutral aluminium oxide,nano-hydroxyapatite and silica).The spectral feature of fsDNA can be clearly observed in the spectrum of the sample.Partial least squares(PLS)model was built for quantitative determination of fsDNA using 28 solutions,and 13 solutions with interferences were used for validation of the model.The results showed that the correlation coefficient(R)between the predicted and the reference concentration is 0.9727 and the recoveries of the validation samples are in the range of 98.2%-100.7%.展开更多
Near infrared diffuse reflectance spectroscopy(NIRDRS) has gained wide attention due to its convenience for rapid quantitative analysis of complex samples. A method for rapid analysis of triglycerides in human serum u...Near infrared diffuse reflectance spectroscopy(NIRDRS) has gained wide attention due to its convenience for rapid quantitative analysis of complex samples. A method for rapid analysis of triglycerides in human serum using NIRDRS with silver mirror as the substrate is developed. Due to the even and high reflectance of the silver mirror, the spectral response is enhanced and the background interference is reduced.Furthermore, both linear and nonlinear modeling strategies were investigated adopting the partial least squares(PLS) and least squares support vector regression(LS-SVR), continuous wavelet transform(CWT)was used for spectral preprocessing, and variable selection was tried using Monte Carlo uninformative variable elimination(MC-UVE), randomization test(RT) and competitive adaptive reweighted sampling(CARS) for optimization the models. The results show that the determination coefficient(R) between the predicted and reference concentration is 0.9624 and the root mean squared error of prediction(RMSEP) is 0.21. The maximum deviation of the prediction results is as low as 0.473 mmol/L. The proposed method may provide an alternative method for routine analysis of serum triglycerides in clinical applications.展开更多
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst wa...This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.展开更多
基金Supported by National Wheat Industry System(CARS-E-2-36)Henan Wheat Industry System(S2010-10-02)National Science and Technology Support Plan(2011BAD35B-03)~~
文摘[Objective] The aim was to build an evaluation method rapidly identifying wheat drought tolerance with near infrared diffuse reflectance spectroscopy. [Method] In the research, 36 wheat varieties in 2007-2009 were chosen and drought-tolerance degrees of wheat were graded and identified according to Winter-wheat Drought Tol- erance Evaluation Technical Standards (GB/T 21127-2007), and harvest wheat grains underwent spectrum collection, with a full-spectrum analyzer, to establish a database. [Result] Based on qualitative analysis and full-spectrum correlation research, the coef- ficient of determination (RSQ) and cross-validation coefficient of determination (1-VR) were concluded at 0.697 5 and 0.600 2, showing near-infrared diffuse reflectance spectroscopy is of significant differences among wheat varieties and of significant or extremely significant correlation with drought-tolerance indices. [Conclusion] The re- search indicates that to evaluate drought-tolerance of wheat with near-infrared diffuse reflectance spectroscopy is a rapid and feasible way, which is simple, convenient without damages on grains, and of practical values for construction wheat drought-tol- erance evaluation index system and identification of breeding materials.
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
文摘The non-linear relationships between the contents of ginsenoside Rg 1, Rb 1, Rd and Panax notoginseng saponins(PNS) in Panax notoginseng root herb and the near infrared(NIR) diffuse reflectance spectra of the herb were established by means of artificial neural networks(ANNs). Four three-layered perception feed-forward networks were trained with an error back-propagation algorithm. The significant principal components of the NIR spectral data matrix were utilized as the input of the networks. The networks architecture and parameters were selected so as to offer less prediction errors. Relative prediction errors for Rg 1, Rb 1, Rd and PNS obtained with the optimum ANN models were 8.99%, 6.54%, 8.29%, and 5.17%, respectively, which were superior to those obtained with PLSR methods. It is verified that ANN is a suitable approach to model this complex non-linearity. The developed method is fast, non-destructive and accurate and it provides a new efficient approach for determining the active components in the complex system of natural herbs.
文摘Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper.
文摘This study investigated the development of a novel approach to surface characterization of drug poly- morphism and the extension of the capabilities of this method to perform 'real time' in situ measure- ments. This was achieved using diffuse reflectance visible (DRV) spectroscopy and dye deposition, using the pH sensitive dye, thymol blue (TB). Two polymorphs, SFN-β and SFN-γ, of the drug substance sulfanilamide (SFN) were examined. The interaction of adsorbed dye with polymorphs showed different behavior, and thus reported different DRV spectra. Consideration of the acid/base properties of the morphological forms of the drug molecule provided a rationalization of the mechanism of differential coloration by indicator dyes. The kinetics of the polymorphic transformation of SFN polymorphs was monitored using treatment with TB dye and DRV spectroscopy. The thermally-induced transformation fitted a first-order solid-state kinetic model (R2=0.992), giving a rate constant of 2.43 × 10^- 2 s 1.
文摘Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols.
文摘In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.
基金supported by the National Natural Science Foundation of China(U1862111,U1232119)Sichuan Provincial International Cooperation Project(2017HH0030)the Innovative Research Team of Sichuan Province(2016TD0011)~~
文摘Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation.
基金supported by the National Natural Science Foundation of China(51708078,21576034)Chongqing Postdoctoral Science Foundation funded project(Xm2016027)the Innovative Research Team of Chongqing(CXTDG201602014,CXTDX201601016)~~
文摘Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide.
基金Projects(50806025, 51021065, 50976038) supported by the National Natural Science Foundation of ChinaProject(20100480893) supported by the China Postdoctoral Science FoundationProject(1001022B) supported by the Postdoctoral Research Fund of Jiangsu Province, China
文摘The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed.
基金supported by the National Natural Science Foundation of China(No.21775076)the fundamental research funds for central universities(China)
文摘A method for quantitative determination of fish sperm deoxyribonucleic acid(fsDNA)was developed by using titanium dioxide(TiO2)as an adsorbent and near-infrared diffuse reflectance spectroscopy(NIRDRS).The selective enrichment of fsDNA was proved by comparing the adsorption efficiency of bovine serum albumin,tyrosine and tryptophan,and the low adsorption background of TiO2 was illustrated by comparing the spectra of four commonly-used inorganic adsorbents(alkaline aluminium oxide,neutral aluminium oxide,nano-hydroxyapatite and silica).The spectral feature of fsDNA can be clearly observed in the spectrum of the sample.Partial least squares(PLS)model was built for quantitative determination of fsDNA using 28 solutions,and 13 solutions with interferences were used for validation of the model.The results showed that the correlation coefficient(R)between the predicted and the reference concentration is 0.9727 and the recoveries of the validation samples are in the range of 98.2%-100.7%.
基金supported by the National Natural Science Foundation of China (Nos. 21475068, 21775076)
文摘Near infrared diffuse reflectance spectroscopy(NIRDRS) has gained wide attention due to its convenience for rapid quantitative analysis of complex samples. A method for rapid analysis of triglycerides in human serum using NIRDRS with silver mirror as the substrate is developed. Due to the even and high reflectance of the silver mirror, the spectral response is enhanced and the background interference is reduced.Furthermore, both linear and nonlinear modeling strategies were investigated adopting the partial least squares(PLS) and least squares support vector regression(LS-SVR), continuous wavelet transform(CWT)was used for spectral preprocessing, and variable selection was tried using Monte Carlo uninformative variable elimination(MC-UVE), randomization test(RT) and competitive adaptive reweighted sampling(CARS) for optimization the models. The results show that the determination coefficient(R) between the predicted and reference concentration is 0.9624 and the root mean squared error of prediction(RMSEP) is 0.21. The maximum deviation of the prediction results is as low as 0.473 mmol/L. The proposed method may provide an alternative method for routine analysis of serum triglycerides in clinical applications.
基金the National Natural Science Foundation of China (U1632273, 21673214,U1732272, U1832165).
文摘This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.