To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is char...The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is characteristic of wideband effect ranging from the visible,near infrared and 3-5μm,8-14μm infrared protion of the spectrum,as well as the radar region from 8 to 18GHz when these three materials form αlayerstructure material system.The microwave absorbing ability of material is hardly changed.The resonance peak moves towards lower frequency as the thickness of the visible,near infrared coating and the low infrared emitting coating increases.This problem can be resolved by controlling the thickness of the matrial.On the other hand, the infrared emissivity εof the material system increases as the thickness of the visible,near infrared coating increases.This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness.The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural background.展开更多
Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im...Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
Obscuring time of smokescreen is an important parameter, and diffusion coefficient is a crucial parameter to the obscuring time of smokescreen. The relational equation that effective obscuring area of smoke changes wi...Obscuring time of smokescreen is an important parameter, and diffusion coefficient is a crucial parameter to the obscuring time of smokescreen. The relational equation that effective obscuring area of smoke changes with diffusion co- efficient and diffusing time was derived. And based on experimental data, the parabolas that the area changes with time are drawn, and the relation between diffusion coefficient and obscuring time of smoke-screen is analyzed. Diffusion coefficients of smoke cloud in the infrared (IR) and in the visible light are compared with, the two-phase flow character of aerosol particle is found while diffusing in the two wavebands. And their differences are analyzed in detail.展开更多
Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve i...Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.展开更多
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc...Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.展开更多
High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand id...High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy.展开更多
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri...Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.展开更多
The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The we...The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The well-performed moving window principal component analysis linear discriminant analysis(MWPCA-LDA)was also conducted for comparison.A total of 306 transgenic(positive)and 150 nont ransgenic(negative)leave samples of sugarcane were collected and divided to calibration,prediction,and validation.The diffuse reflection spectra were corected using Savitzky-Golay(SG)smoothing with first-order derivative(d=1),third-degree polynomial(p=3)and 25 smpothing points(m=25).The selected waveband was 736-1054nm with MW-BiCC,and the positive and negative validation recognition rates(V_REC^(+),VREC^(-))were 100%,98.0%,which achieved the same effect as MWPCA-LDA.Another example,the 93 B-thalassemia(positive)and 148 nonthalassemia(negative)of human hemolytic samples were colloctod.The transmission spectra were corrected using SG smoothing withd=1,p=3 and m=53.Using M W-BiCC,many best wavebands were selected(e.g.,1116-1146,17941848 and 22842342nm).The V_REC^(+)and V_REC^(-)were both 100%,which achieved the same effect as MW-PCA-LDA.Importantly,the BICC only required ca lculating correlation cofficients between the spectrum of prediction sample and the average spectra of two types of calibration samples.Thus,BiCC was very simple in algorithm,and expected to obtain more applications.The results first confirmed the feasibility of distinguishing B-thalassemia and normal control samples by NIR spectroscopy,and provided a promising simple tool for large population thalassemia screening.展开更多
This paper reports that hexagonal-phase LaF3:Yb0.20^3+,Er0.02^3+ and LaF3:Yb0.20^3+, Tm0.02^3+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected are...This paper reports that hexagonal-phase LaF3:Yb0.20^3+,Er0.02^3+ and LaF3:Yb0.20^3+, Tm0.02^3+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb^3+/Er^3+ and Yb^3+/Tm^3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluo- rescence mechanisms of LaF2:Yb0.20^3+, Er0.02^3+ and LaF3:Yb0.20^3+,Tm0.02^3+ NCs are investigated with a 980-nm diode laser as excitation source.展开更多
Dear Editor.This letter presents a normalization mechanism to effectively fuse infrared and visible images in an encoder-decoder network.Source images are decomposed into source-invariant structure and sourcespecific ...Dear Editor.This letter presents a normalization mechanism to effectively fuse infrared and visible images in an encoder-decoder network.Source images are decomposed into source-invariant structure and sourcespecific detail features.Then,the information of detail features is sufficiently incorporated into the structure features using this normalization mechanism in the decoder,which generates high-contrast fused images with highlighted targets and abundant texture information.Qualitative and quantitative experiments on two challenging datasets demonstrate the superiority of our method over current stateof-the-art methods.展开更多
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe...The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.展开更多
New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio freq...New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of Si O2, Zn O: Al(ZAO) and Ce O2-Ti O2(CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer Si O2 film can diminish the interference coloring and increase the transparency; the inner Si O2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption(> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.展开更多
We compare the contrast of faculae, in visible light and in the near infrared (NIR), that were associated with the active region NOAA 8518 which crossed the solar disk from April 19 to 27, 1999. We obtained NIR contin...We compare the contrast of faculae, in visible light and in the near infrared (NIR), that were associated with the active region NOAA 8518 which crossed the solar disk from April 19 to 27, 1999. We obtained NIR continuum images at 1.6 μm at the Big Bear Solar Observatory (BBSO) with an Indium Gallium Arsenide (In Ga As) NIR digital camera. We also obtained high-resolution longitudinal magnetograms and visible light filtergrams at 610.3 nm with the newly developed Digital Vector Magnetograph (DVMG). Our data show that the contrast of faculae has the same sign in both the visible and the NIR. We did not find any so-called ``dark faculae', faculae that are bright in the visible and simultaneously dark in the NIR. We determined a threshold magnetic flux density that separates pores from faculae.展开更多
Vis/NIR spectroscopy,in combination with partial least square(PLS)analysis and a back-propagation neural network,is investigated to identify endothelium corneum gigeriae galli(ECGG).The spectral features of ECGGs and ...Vis/NIR spectroscopy,in combination with partial least square(PLS)analysis and a back-propagation neural network,is investigated to identify endothelium corneum gigeriae galli(ECGG).The spectral features of ECGGs and their counterfeits are reasonably differentiated in vis/NIR region,which provides enough qualitative information to establish the relationship between the spectra and samples for identification.After pretreatment of the spectral data,cross validation is implemented for extracting the best number of principal components.Then the calibration and validation set are performed well.The PLS and back propagation neural network(BPNN)model gives the BPNN to be 0.9941 and the root mean square residual(RMSR)to be 0.0775 for the calibration set,and the multiple correlation coefficient(MCC)to 0.9874 and the RMSE to 0.1134 for the validation set.Thus the PLS and BPNN model is reliable and practicable.Through testing,a recognition accuracy of 100%is achieved.The present study could offer a new approach for fast and nondestructive discrimination of ECGG and its counterfeit.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p...Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.展开更多
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also...Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.展开更多
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is characteristic of wideband effect ranging from the visible,near infrared and 3-5μm,8-14μm infrared protion of the spectrum,as well as the radar region from 8 to 18GHz when these three materials form αlayerstructure material system.The microwave absorbing ability of material is hardly changed.The resonance peak moves towards lower frequency as the thickness of the visible,near infrared coating and the low infrared emitting coating increases.This problem can be resolved by controlling the thickness of the matrial.On the other hand, the infrared emissivity εof the material system increases as the thickness of the visible,near infrared coating increases.This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness.The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural background.
基金supported in part by the National Natural Science Foundation of China under Grant 41505017.
文摘Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
文摘Obscuring time of smokescreen is an important parameter, and diffusion coefficient is a crucial parameter to the obscuring time of smokescreen. The relational equation that effective obscuring area of smoke changes with diffusion co- efficient and diffusing time was derived. And based on experimental data, the parabolas that the area changes with time are drawn, and the relation between diffusion coefficient and obscuring time of smoke-screen is analyzed. Diffusion coefficients of smoke cloud in the infrared (IR) and in the visible light are compared with, the two-phase flow character of aerosol particle is found while diffusing in the two wavebands. And their differences are analyzed in detail.
文摘Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.
基金supported by the China Postdoctoral Science Foundation Funded Project(No.2021M690385)the National Natural Science Foundation of China(No.62101045).
文摘Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.
文摘High-end wine brand is made through the use of high-quality grape variety and yeast strain, and through a unique process. Not only is it rich in nutrients, but also it has a unique taste and a fragrant scent. Brand identification of wine is difficult and complex because of high similarity. In this paper, visible and near-infrared (NIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to explore the feasibility of wine brand identification. Chilean Aoyo wine (2016 vintage) was selected as the identification brand (negative, 100 samples), and various other brands of wine were used as interference brands (positive, 373 samples). Samples of each type were randomly divided into the calibration, prediction and validation sets. For comparison, the PLS-DA models were established in three independent and two complex wavebands of visible (400 - 780 nm), short-NIR (780 - 1100 nm), long-NIR (1100 - 2498 nm), whole NIR (780 - 2498 nm) and whole scanning (400 - 2498 nm). In independent validation, the five models all achieved good discriminant effects. Among them, the visible region model achieved the best effect. The recognition-accuracy rates in validation of negative, positive and total samples achieved 100%, 95.6% and 97.5%, respectively. The results indicated the feasibility of wine brand identification with Vis-NIR spectroscopy.
文摘Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.
基金supported by the Science and Technology Project of Guangdong Province of China(Nos.2014A020213016 and 2014A020212445).
文摘The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The well-performed moving window principal component analysis linear discriminant analysis(MWPCA-LDA)was also conducted for comparison.A total of 306 transgenic(positive)and 150 nont ransgenic(negative)leave samples of sugarcane were collected and divided to calibration,prediction,and validation.The diffuse reflection spectra were corected using Savitzky-Golay(SG)smoothing with first-order derivative(d=1),third-degree polynomial(p=3)and 25 smpothing points(m=25).The selected waveband was 736-1054nm with MW-BiCC,and the positive and negative validation recognition rates(V_REC^(+),VREC^(-))were 100%,98.0%,which achieved the same effect as MWPCA-LDA.Another example,the 93 B-thalassemia(positive)and 148 nonthalassemia(negative)of human hemolytic samples were colloctod.The transmission spectra were corrected using SG smoothing withd=1,p=3 and m=53.Using M W-BiCC,many best wavebands were selected(e.g.,1116-1146,17941848 and 22842342nm).The V_REC^(+)and V_REC^(-)were both 100%,which achieved the same effect as MW-PCA-LDA.Importantly,the BICC only required ca lculating correlation cofficients between the spectrum of prediction sample and the average spectra of two types of calibration samples.Thus,BiCC was very simple in algorithm,and expected to obtain more applications.The results first confirmed the feasibility of distinguishing B-thalassemia and normal control samples by NIR spectroscopy,and provided a promising simple tool for large population thalassemia screening.
基金supported by the National Natural Science Foundation of China (Grant Nos 10474096 and 50672030)
文摘This paper reports that hexagonal-phase LaF3:Yb0.20^3+,Er0.02^3+ and LaF3:Yb0.20^3+, Tm0.02^3+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb^3+/Er^3+ and Yb^3+/Tm^3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluo- rescence mechanisms of LaF2:Yb0.20^3+, Er0.02^3+ and LaF3:Yb0.20^3+,Tm0.02^3+ NCs are investigated with a 980-nm diode laser as excitation source.
基金supported in part by the National Natural Science Foundation of China(62171327,61771353)the first batch of application basic technology and science research foundation in Hubei Nuclear Power Operation Engineering Technology Research Center(B210610)the Hubei Three Gorges Laboratory Open Fund(SC215001)。
文摘Dear Editor.This letter presents a normalization mechanism to effectively fuse infrared and visible images in an encoder-decoder network.Source images are decomposed into source-invariant structure and sourcespecific detail features.Then,the information of detail features is sufficiently incorporated into the structure features using this normalization mechanism in the decoder,which generates high-contrast fused images with highlighted targets and abundant texture information.Qualitative and quantitative experiments on two challenging datasets demonstrate the superiority of our method over current stateof-the-art methods.
文摘The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.
基金Funded by the Natural Science Foundation of Hubei Province(No.2014CFB563)the key Technology Innovation Project of Hubei Province(No.2013AAA005)China Postdoctoral Science Foundation(Nos.2013T60752 and 2012M511689)
文摘New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of Si O2, Zn O: Al(ZAO) and Ce O2-Ti O2(CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer Si O2 film can diminish the interference coloring and increase the transparency; the inner Si O2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption(> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.
基金Supported by the National Natural Science Foundation of China.
文摘We compare the contrast of faculae, in visible light and in the near infrared (NIR), that were associated with the active region NOAA 8518 which crossed the solar disk from April 19 to 27, 1999. We obtained NIR continuum images at 1.6 μm at the Big Bear Solar Observatory (BBSO) with an Indium Gallium Arsenide (In Ga As) NIR digital camera. We also obtained high-resolution longitudinal magnetograms and visible light filtergrams at 610.3 nm with the newly developed Digital Vector Magnetograph (DVMG). Our data show that the contrast of faculae has the same sign in both the visible and the NIR. We did not find any so-called ``dark faculae', faculae that are bright in the visible and simultaneously dark in the NIR. We determined a threshold magnetic flux density that separates pores from faculae.
基金Supported by the National Natural Science Foundation of China under Grant No 60878063the Program from Traditional Chinese Medicine Bureau of Guangdong Province(2008233).
文摘Vis/NIR spectroscopy,in combination with partial least square(PLS)analysis and a back-propagation neural network,is investigated to identify endothelium corneum gigeriae galli(ECGG).The spectral features of ECGGs and their counterfeits are reasonably differentiated in vis/NIR region,which provides enough qualitative information to establish the relationship between the spectra and samples for identification.After pretreatment of the spectral data,cross validation is implemented for extracting the best number of principal components.Then the calibration and validation set are performed well.The PLS and back propagation neural network(BPNN)model gives the BPNN to be 0.9941 and the root mean square residual(RMSR)to be 0.0775 for the calibration set,and the multiple correlation coefficient(MCC)to 0.9874 and the RMSE to 0.1134 for the validation set.Thus the PLS and BPNN model is reliable and practicable.Through testing,a recognition accuracy of 100%is achieved.The present study could offer a new approach for fast and nondestructive discrimination of ECGG and its counterfeit.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
文摘Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.
文摘Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.