Photocatalysis is one of the most promising methods owing to its great potential to relieve environmental issue. To construct efficient photocatalyst with low energy consumption, mild catalytic conditions, and stable ...Photocatalysis is one of the most promising methods owing to its great potential to relieve environmental issue. To construct efficient photocatalyst with low energy consumption, mild catalytic conditions, and stable chemical properties are highly desired. In this work, a novel, highly active and environmental friendly mesoporous photocatalyst Bi4O5Br2/SBA-15 was synthesized by hydrothermal method, and its characteristics and visible-light catalytic activity were investigated. The synthesized photocatalyst consisted of Langmuir type IV hysteresis loops, which was confirmed to be a composite material with mesoporous structure. It exhibited a high visible-light absorption intensity and a low recombination rate of photo-generated electrons and holes. When the mass ratio of Bi/SiO2 was 30/100 during the synthesis, the obtained photocatalyst (Bi30/SBA-15) reflected the fastest Rhodamine B (RhB) removal rate and achieved 100% decolorization of RhB by both adsorption and degradation process. This high decolorization efficiency can also be maintained and realized by recycling the used composite in practice. The enhanced visible-light photocatalytic activity of novel Bi4O5Br2/SBA-15 photocatalyst can be ascribed to the existing active sites both inside and outside SBA-15 which enhanced the separation of photo-generated electrons and holes.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first t...A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.展开更多
Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based c...Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO.展开更多
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w...ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.展开更多
Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visi...Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and ...Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and CO_(2) emission.The core of CCHG is to make carbon in coal convert into CH_(4) efficiently with a catalyst.In the past decades,intensive research has been devoted to catalytic hydrogasification of model carbon(pitch coke,activated carbon,coal char).However,the chemical process of CCHG is still not well understood because the coal structure is more complicated,and CCHG is a combination of coal catalytic hydropyrolysis and coal char catalytic hydrogasification.This review seeks to shed light on the catalytic process of raw coal during CCHG.The configuration of suitable catalysts,operating conditions,and feedstocks for tailoring CH_(4) formation were identified,and the underlying mechanisms were elucidated.Based on these results,the CCHG process was evaluated,emphasizing pollutant emissions,energy efficiency,and reactor design.Furthermore,the opportunities and strategic approaches for CCHG under the restraint of carbon neutrality were highlighted by considering the penetration of“green”H2,biomass,and CO_(2) into CCHG.Preliminary investigations from our laboratories demonstrated that the integrated CCHG and biomass/CO_(2) hydrogenation process could perform as an emerging pathway for boosting CH_(4) production by consuming fewer fossil fuels,fulfilling the context of green manufacturing.This work not only provides systematic knowledge of CCHG but also helps to guide the efficient hydrogenation of other carbonaceous resources such as biomass,CO_(2),and coal-derived wastes.展开更多
The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic pr...The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.展开更多
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic p...Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr...Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a...The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.展开更多
Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ...Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
文摘Photocatalysis is one of the most promising methods owing to its great potential to relieve environmental issue. To construct efficient photocatalyst with low energy consumption, mild catalytic conditions, and stable chemical properties are highly desired. In this work, a novel, highly active and environmental friendly mesoporous photocatalyst Bi4O5Br2/SBA-15 was synthesized by hydrothermal method, and its characteristics and visible-light catalytic activity were investigated. The synthesized photocatalyst consisted of Langmuir type IV hysteresis loops, which was confirmed to be a composite material with mesoporous structure. It exhibited a high visible-light absorption intensity and a low recombination rate of photo-generated electrons and holes. When the mass ratio of Bi/SiO2 was 30/100 during the synthesis, the obtained photocatalyst (Bi30/SBA-15) reflected the fastest Rhodamine B (RhB) removal rate and achieved 100% decolorization of RhB by both adsorption and degradation process. This high decolorization efficiency can also be maintained and realized by recycling the used composite in practice. The enhanced visible-light photocatalytic activity of novel Bi4O5Br2/SBA-15 photocatalyst can be ascribed to the existing active sites both inside and outside SBA-15 which enhanced the separation of photo-generated electrons and holes.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金the National Key R&D Program of China(2022YFA1504404)the SINOPEC Research Program(121036-5).
文摘A novel ultra-stable zeolite, NSZ, rich in secondary pores was developed through the combination of gas-phase andmild hydrothermal methods. This zeolite was successfully tested in an industrial setting for the first time in the world. The porestructure characteristics of the NSZ zeolite prepared for industrial use were analyzed and characterized using BET. The resultsindicate a significant increase in the secondary pore volume of NSZ zeolite compared to the existing ultra-stable zeolite HSZ-5, which is produced through a conventional gas-phase method. The average secondary pore volume to total pore volume ratioin NSZ zeolite was found to be 58.96% higher. The catalytic cracking performance of NSZ zeolite was evaluated. The resultsshowed that the NSC-LTA catalyst, with NSZ as the active component, outperformed the HSC-LTA catalyst with HSZ-5 zeolitein terms of obtaining more high-value products (gasoline and liquefied petroleum gas) during the hydrogenated light cycle oilprocessing. Additionally, the NSC-LTA catalyst showed a significant improvement in coke selectivity.
基金financially supported by the National Key Research and Development Program of China(2021YFA1502804)the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U22A20430)+3 种基金the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-FR001)the Natural Science Foundation of Shanxi Province(202203021212201)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxithe Foundation of Taiyuan University of Technology(2022QN138)
文摘Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO.
基金supported by the National Natural Science Foundation of China(22078076)Guangxi Natural Science Foundation(2020GXNSFAA159174)the Opening Project of National Enterprise Technology Center of Guangxi Bossco Environmental Protection Technology Co.,Ltd(GXU-BFY-2020-005).
文摘ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.
基金supported by Natural Science Foundation of Shandong Province(ZR2022MB049)National Natural Science Foundation of China(22078174)。
文摘Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金National Natural Science Foundation of China(22308170)A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department(Y202250270)+2 种基金Key research and development project of Shanxi Province(202102090301029)Scientific Research Incubation Program of Ningbo University of Technology(2022TS12)Scientific Research Project Funded by Ningbo University of Technology(2022KQ04).
文摘Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and CO_(2) emission.The core of CCHG is to make carbon in coal convert into CH_(4) efficiently with a catalyst.In the past decades,intensive research has been devoted to catalytic hydrogasification of model carbon(pitch coke,activated carbon,coal char).However,the chemical process of CCHG is still not well understood because the coal structure is more complicated,and CCHG is a combination of coal catalytic hydropyrolysis and coal char catalytic hydrogasification.This review seeks to shed light on the catalytic process of raw coal during CCHG.The configuration of suitable catalysts,operating conditions,and feedstocks for tailoring CH_(4) formation were identified,and the underlying mechanisms were elucidated.Based on these results,the CCHG process was evaluated,emphasizing pollutant emissions,energy efficiency,and reactor design.Furthermore,the opportunities and strategic approaches for CCHG under the restraint of carbon neutrality were highlighted by considering the penetration of“green”H2,biomass,and CO_(2) into CCHG.Preliminary investigations from our laboratories demonstrated that the integrated CCHG and biomass/CO_(2) hydrogenation process could perform as an emerging pathway for boosting CH_(4) production by consuming fewer fossil fuels,fulfilling the context of green manufacturing.This work not only provides systematic knowledge of CCHG but also helps to guide the efficient hydrogenation of other carbonaceous resources such as biomass,CO_(2),and coal-derived wastes.
基金supported by the National Natural Science Foundation of China (22278086)
文摘The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.
文摘Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
基金the National Natural Science Foundation of China(52206262)Small and Medium-sized Sci-tech Enterprises Innovation Capability Improvement Project of Shandong Province,China(2022TSGC2248,2023TSGC0579)+1 种基金Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(2023RCKY170)Natural Science Foundation of Shandong Province,China(ZR2020ME191).
文摘Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
基金support from the National Key R&D Plan Project(No.2022YFA1505000)Prospective Basic Research Projects of CNPC(Nos.2021DQ03(2022Z-29)+4 种基金2022DJ5406,2022DJ5407,2022DJ5408,2022DJ4507,and TGRI-2021-1)the Natural Science Foundation of Shaanxi Province(No.2022JQ-078)the Natural Science Foundation of China(No.52302308)the Outstanding Youth Science Foundation Project of the National Natural Science Foundation of China(Overseas)(No.GYKP033)the Qinchuangyuan Cited High-Level Innovative and Entrepreneurial Talents Project(No.QCYRCXM-2022-143).
文摘The high exciton binding energy and lack of a positive oxidation band potential restrict the photocatalytic CO_(2)reduction efficiency of lead-free Bi-based halide perovskites Cs_(3)Bi_(2)X_(9)(X=Br,I).In this study,a sequential growth method is presented to prepare a visible-light-driven(λ>420 nm)Z-scheme heterojunction photocatalyst composed of BiVO_(4)nanocrystals decorated on a Cs_(3)Bi_(2)I_(9)nanosheet for photocatalytic CO_(2)reduction coupled with water oxidation.The Cs_(3)Bi_(2)I_(9)/BiVO_(4)Z-scheme heterojunction photocatalyst is stable in the gas-solid photocatalytic CO_(2)reduction system,demonstrating a high visible-light-driven photocatalytic CO_(2)-to-CO production rate of 17.5μmol/(g·h),which is approximately three times that of pristine Cs_(3)Bi_(2)I_(9).The high efficiency of the Cs_(3)Bi_(2)I_(9)/BiVO_(4)heterojunction was attributed to the improved charge separation in Cs_(3)Bi_(2)I_(9).Moreover,the Z-scheme charge-transfer pathway preserves the negative reduction potential of Cs_(3)Bi_(2)I_(9)and the positive oxidation potential of BiVO_()4.This study off ers solid evidence of constructing Z-scheme heterojunctions to improve the photocatalytic performance of lead-free halide perovskites and would inspire more ideas for developing leadfree halide perovskite photocatalysts.
文摘Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.