With the development of wood industry, the processing of wood products becomemore significant. This paper discusses the developmen of machine vision system used to inspect andclassny the various types of defects of wo...With the development of wood industry, the processing of wood products becomemore significant. This paper discusses the developmen of machine vision system used to inspect andclassny the various types of defects of wood suxface. The surface defeds means the variations ofcolour and textUre. The machine vision system is to dated undesirable 'defecs' that can appear onthe surface of rough wood lwnber. A neural network was used within the Blackboard framework fora labeling verification step of the high-level recognition module of vision system. The system hasbere successfully tested on a number of boards from several different species.展开更多
Robot World Cup Initiative (RoboCup) is a worldwide competition proposed to advance research in robotics and artificial intelligence. It has a league called RoboCup soccer devoted for soccer robots, which is a challen...Robot World Cup Initiative (RoboCup) is a worldwide competition proposed to advance research in robotics and artificial intelligence. It has a league called RoboCup soccer devoted for soccer robots, which is a challenge because robots are mobile, fully autonomous, multi-agents, and they play on a dynamic environment. Moreover, robots must recognize the game entities, which is a crucial task during a game. A camera is usually used as an input system to recognize ball, opponents, soccer field, and so on. These elements may be recognized applying some tools of computational intelligence, for example an artificial neural network. This paper describes the application of an artificial neural network on middle size robotic football league, where a multilayer perceptron neural network is trained with the backpropagation algorithm, to classify elements on the image. Each output neuron represents an entity and its output value depends on the current entity that is present on the image. The results show that an artificial neural network successfully classified the entities. They were recognized even when similar color entities were present on the image.展开更多
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul...We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.展开更多
In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many...In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many vision tasks. Whether we need to realize the interaction between images and text or recognize fine categories, it provides reliable information. This article reviews the development of object detection networks. Starting from RCNN, we introduce object detection based on candidate regions, including Fast R-CNN, Faster R-CNN, etc.;and then start to introduce single-shot networks including YOLO, SSD, and Retina Net, etc. Detectors are the most excellent methods at present. By reviewing the current research status of object detection networks, it provides suggestions for the further development trend and research of object detection.展开更多
With the development of motorization, road traffic crashes have become the leading cause of death in many countries. Among roadway traffic crashes, almost 90% of accidents are related to driver behaviors, wherein driv...With the development of motorization, road traffic crashes have become the leading cause of death in many countries. Among roadway traffic crashes, almost 90% of accidents are related to driver behaviors, wherein driving anger is one of the most leading causes to vehicle crash-related conditions. To some extent, angry driving is considered more dangerous than typical driving distraction due to emotion agitation. Aggressive driving behaviors create many kinds of roadway traffic safety hazards. Mitigating potential risk caused by road rage is essential to increase the overall level of traffic safety. This paper puts forward an integrated computer vision model composed of convolutional neural network in feature extraction and Bayesian Gaussian process in classification to recognize driver anger and distinguish angry driving from natural driving status. Histogram of gradients (HOG) was applied to extract facial features. Convolutional neural network extracted features on eye, eyebrow, and mouth, which are considered most related to anger emotion. Extracted features with its probability were sent to Bayesian Gaussian process classier as input. Integral analysis on three extracted features was conducted by Gaussian process classifier and output returned the likelihood of being anger from the overall study of all extracted features. An overall accuracy rate of 86.2% was achieved in this study. Tongji University 8-Degree-of-Freedom driving simulator was used to collect data from 30 recruited drivers and build test scenario.展开更多
A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition...A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition by recommending. And neural networks were utilized to accomplish the color space conversion from CIE standard color space to CRT device color space. The neural networks related the color space conversion and color reproduction of soft/hard-copy directly to the influence of the illuminance and viewing condition in vision perceiver. The average color difference of training samples is 3.06 and that of testing samples is 5.17. The experiment results indicated that the neural networks can satisfy the requirements for the color appearance of hard-copy reproduction in CRT.展开更多
This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks w...This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks which learn knowledge from the examples, to obtain the well performed fuzzy rules. Furthermore this fuzzy inference system is completed by neural network structure which can work in parallel. The segmentation process consists of pre-segmentation based on region growing algorithm and region merging based on FNNHS. The experimental results on the complicated image manifest the utility of this method.展开更多
In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for...In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for uneven heating in reflow soldering process. Conventional computer vision technique based on OpenCV or Halcon usually cause false positive call for originally good soldering point on PCB because OpenCV or Halcon use the pre-defined threshold in color proportion for deciding whether the specific soldering point is OK or NG (not good). However, soldering point forms are various after heating in reflow soldering process. This paper puts forward a VGG structure deep convolutional neural network, which is named SolderNet for processing soldering point after reflow heating process to effectively inspect soldering point status, reduce omission rate and error rate, and increase first pass rate. SolderNet consists of 11 hidden convolution layers and 3 densely connected layers. Accuracy reports are divided into OK point recognition and NG point recognition. For OK soldering point recognition, 92% is achieved. For NG soldering point recognition, 99% is achieved. The dataset is collected from KAGA Co. Ltd Plant in Suzhou. First pass rate at KAGA plant is increased from 25% to 80% in general.展开更多
A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical pa...A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical patterns and match with the weld data collected on line, and so realize the accurate detection of the weld position in arc welding process.展开更多
This study evaluates the performance and reliability of a vision transformer (ViT) compared to convolutional neural networks (CNNs) using the ResNet50 model in classifying lung cancer from CT images into four categori...This study evaluates the performance and reliability of a vision transformer (ViT) compared to convolutional neural networks (CNNs) using the ResNet50 model in classifying lung cancer from CT images into four categories: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), large cell carcinoma (LULC), and normal. Although CNNs have made significant advancements in medical imaging, their limited capacity to capture long-range dependencies has led to the exploration of ViTs, which leverage self-attention mechanisms for a more comprehensive global understanding of images. The study utilized a dataset of 748 lung CT images to train both models with standardized input sizes, assessing their performance through conventional metrics—accuracy, precision, recall, F1 score, specificity, and AUC—as well as cross entropy, a novel metric for evaluating prediction uncertainty. Both models achieved similar accuracy rates (95%), with ViT demonstrating a slight edge over ResNet50 in precision and F1 scores for specific classes. However, ResNet50 exhibited higher recall for LULC, indicating fewer missed cases. Cross entropy analysis showed that the ViT model had lower average uncertainty, particularly in the LUAD, Normal, and LUSC classes, compared to ResNet50. This finding suggests that ViT predictions are generally more reliable, though ResNet50 performed better for LULC. The study underscores that accuracy alone is insufficient for model comparison, as cross entropy offers deeper insights into the reliability and confidence of model predictions. The results highlight the importance of incorporating cross entropy alongside traditional metrics for a more comprehensive evaluation of deep learning models in medical image classification, providing a nuanced understanding of their performance and reliability. While the ViT outperformed the CNN-based ResNet50 in lung cancer classification based on cross-entropy values, the performance differences were minor and may not hold clinical significance. Therefore, it may be premature to consider replacing CNNs with ViTs in this specific application.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
A technique for wear particle identification using computer vision system is described. The computer vision system employs LVQ Neural Networks as classifier to recognize the surface texture of wear particles in lubric...A technique for wear particle identification using computer vision system is described. The computer vision system employs LVQ Neural Networks as classifier to recognize the surface texture of wear particles in lubricating oil and determine the conditions of machines. The recognition process includes four stages:(1)capturing image from ferrographies containing wear particles;(2) digitising the image and extracting features;(3) learning the training data selected from the feature data set;(4) identifying the wear particles and generating the result report of machine condition classification. To verify the technique proposed here, the recognition results of several typical classes of wear particles generated at the sliding and rolling surfaces in a diesel engine are presented.展开更多
A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ...A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.展开更多
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve...This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.展开更多
文摘With the development of wood industry, the processing of wood products becomemore significant. This paper discusses the developmen of machine vision system used to inspect andclassny the various types of defects of wood suxface. The surface defeds means the variations ofcolour and textUre. The machine vision system is to dated undesirable 'defecs' that can appear onthe surface of rough wood lwnber. A neural network was used within the Blackboard framework fora labeling verification step of the high-level recognition module of vision system. The system hasbere successfully tested on a number of boards from several different species.
文摘Robot World Cup Initiative (RoboCup) is a worldwide competition proposed to advance research in robotics and artificial intelligence. It has a league called RoboCup soccer devoted for soccer robots, which is a challenge because robots are mobile, fully autonomous, multi-agents, and they play on a dynamic environment. Moreover, robots must recognize the game entities, which is a crucial task during a game. A camera is usually used as an input system to recognize ball, opponents, soccer field, and so on. These elements may be recognized applying some tools of computational intelligence, for example an artificial neural network. This paper describes the application of an artificial neural network on middle size robotic football league, where a multilayer perceptron neural network is trained with the backpropagation algorithm, to classify elements on the image. Each output neuron represents an entity and its output value depends on the current entity that is present on the image. The results show that an artificial neural network successfully classified the entities. They were recognized even when similar color entities were present on the image.
文摘We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.
文摘In today’s world, computer vision technology has become a very important direction in the field of Internet applications. As one of the basic problems of computer vision, object detection has become the basis of many vision tasks. Whether we need to realize the interaction between images and text or recognize fine categories, it provides reliable information. This article reviews the development of object detection networks. Starting from RCNN, we introduce object detection based on candidate regions, including Fast R-CNN, Faster R-CNN, etc.;and then start to introduce single-shot networks including YOLO, SSD, and Retina Net, etc. Detectors are the most excellent methods at present. By reviewing the current research status of object detection networks, it provides suggestions for the further development trend and research of object detection.
文摘With the development of motorization, road traffic crashes have become the leading cause of death in many countries. Among roadway traffic crashes, almost 90% of accidents are related to driver behaviors, wherein driving anger is one of the most leading causes to vehicle crash-related conditions. To some extent, angry driving is considered more dangerous than typical driving distraction due to emotion agitation. Aggressive driving behaviors create many kinds of roadway traffic safety hazards. Mitigating potential risk caused by road rage is essential to increase the overall level of traffic safety. This paper puts forward an integrated computer vision model composed of convolutional neural network in feature extraction and Bayesian Gaussian process in classification to recognize driver anger and distinguish angry driving from natural driving status. Histogram of gradients (HOG) was applied to extract facial features. Convolutional neural network extracted features on eye, eyebrow, and mouth, which are considered most related to anger emotion. Extracted features with its probability were sent to Bayesian Gaussian process classier as input. Integral analysis on three extracted features was conducted by Gaussian process classifier and output returned the likelihood of being anger from the overall study of all extracted features. An overall accuracy rate of 86.2% was achieved in this study. Tongji University 8-Degree-of-Freedom driving simulator was used to collect data from 30 recruited drivers and build test scenario.
文摘A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition by recommending. And neural networks were utilized to accomplish the color space conversion from CIE standard color space to CRT device color space. The neural networks related the color space conversion and color reproduction of soft/hard-copy directly to the influence of the illuminance and viewing condition in vision perceiver. The average color difference of training samples is 3.06 and that of testing samples is 5.17. The experiment results indicated that the neural networks can satisfy the requirements for the color appearance of hard-copy reproduction in CRT.
文摘This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks which learn knowledge from the examples, to obtain the well performed fuzzy rules. Furthermore this fuzzy inference system is completed by neural network structure which can work in parallel. The segmentation process consists of pre-segmentation based on region growing algorithm and region merging based on FNNHS. The experimental results on the complicated image manifest the utility of this method.
文摘In Electronics Manufacturing Services (EMS) industry, Printed Circuit Board (PCB) inspection is tricky and hard, especially for soldering point inspection due to the extremely tiny size and inconsistent appearance for uneven heating in reflow soldering process. Conventional computer vision technique based on OpenCV or Halcon usually cause false positive call for originally good soldering point on PCB because OpenCV or Halcon use the pre-defined threshold in color proportion for deciding whether the specific soldering point is OK or NG (not good). However, soldering point forms are various after heating in reflow soldering process. This paper puts forward a VGG structure deep convolutional neural network, which is named SolderNet for processing soldering point after reflow heating process to effectively inspect soldering point status, reduce omission rate and error rate, and increase first pass rate. SolderNet consists of 11 hidden convolution layers and 3 densely connected layers. Accuracy reports are divided into OK point recognition and NG point recognition. For OK soldering point recognition, 92% is achieved. For NG soldering point recognition, 99% is achieved. The dataset is collected from KAGA Co. Ltd Plant in Suzhou. First pass rate at KAGA plant is increased from 25% to 80% in general.
基金Guangdong Provincial Natural Science Foundation of China
文摘A kind of self organizing artificial neural network used for weld detection is presented in this paper, and its concepts and issues are discussed. The network can transform the weld visual information into typical patterns and match with the weld data collected on line, and so realize the accurate detection of the weld position in arc welding process.
文摘This study evaluates the performance and reliability of a vision transformer (ViT) compared to convolutional neural networks (CNNs) using the ResNet50 model in classifying lung cancer from CT images into four categories: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), large cell carcinoma (LULC), and normal. Although CNNs have made significant advancements in medical imaging, their limited capacity to capture long-range dependencies has led to the exploration of ViTs, which leverage self-attention mechanisms for a more comprehensive global understanding of images. The study utilized a dataset of 748 lung CT images to train both models with standardized input sizes, assessing their performance through conventional metrics—accuracy, precision, recall, F1 score, specificity, and AUC—as well as cross entropy, a novel metric for evaluating prediction uncertainty. Both models achieved similar accuracy rates (95%), with ViT demonstrating a slight edge over ResNet50 in precision and F1 scores for specific classes. However, ResNet50 exhibited higher recall for LULC, indicating fewer missed cases. Cross entropy analysis showed that the ViT model had lower average uncertainty, particularly in the LUAD, Normal, and LUSC classes, compared to ResNet50. This finding suggests that ViT predictions are generally more reliable, though ResNet50 performed better for LULC. The study underscores that accuracy alone is insufficient for model comparison, as cross entropy offers deeper insights into the reliability and confidence of model predictions. The results highlight the importance of incorporating cross entropy alongside traditional metrics for a more comprehensive evaluation of deep learning models in medical image classification, providing a nuanced understanding of their performance and reliability. While the ViT outperformed the CNN-based ResNet50 in lung cancer classification based on cross-entropy values, the performance differences were minor and may not hold clinical significance. Therefore, it may be premature to consider replacing CNNs with ViTs in this specific application.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
文摘A technique for wear particle identification using computer vision system is described. The computer vision system employs LVQ Neural Networks as classifier to recognize the surface texture of wear particles in lubricating oil and determine the conditions of machines. The recognition process includes four stages:(1)capturing image from ferrographies containing wear particles;(2) digitising the image and extracting features;(3) learning the training data selected from the feature data set;(4) identifying the wear particles and generating the result report of machine condition classification. To verify the technique proposed here, the recognition results of several typical classes of wear particles generated at the sliding and rolling surfaces in a diesel engine are presented.
基金This project was supported by the research foundation of China Education Ministry for the scholars from abroad (2002247).
文摘A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.
基金supported by the Beijing Municipal Science and Technology Project,China (Z151100001015004)
文摘This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds.