The classification of seedlings is important to ensure the viability of seedlings after transplantation and is acknowledged as a key factor in forestation and environmental improvement. Based on numerous papers on aut...The classification of seedlings is important to ensure the viability of seedlings after transplantation and is acknowledged as a key factor in forestation and environmental improvement. Based on numerous papers on automatic seedling classification (ASC), the seedling grading theory, traditional grading methods, the background and the proceeding of ASC techniques are described. The automation of the measurement of seedling morphological characteristics by photoelectric meters and computer vision is studied, and the automatic methods of the current grading systems are described respectively. And the further researches on ASC by computer vision are proposed.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ...Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.展开更多
AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conduc...AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conducted using a standardized recognition acuity chart(Snellen visual chart:at 3 m)and the baby vision model assessment.The baby vision device includes a screen,a near infrared camera and a computer.Children were seated at a measured distance of 33-40 cm from a display for testing.VA was estimated according to the highest resolution the children could follow.Decimal VA data were converted to logarithm of the minimum angle of resolution(logMAR)for statistical analysis.The VA results for each child were recorded and analyzed for consistency.RESULTS:The mean VA measured using the Snellen visual chart was 0.62±0.32,and that assessed using the baby vision test was 0.66±0.27.The 95%limit of agreement was-0.609 to 0.695,with 95.2%(100/105)plots within the 95%limits of agreement.VA values of the baby vision test were significantly correlated with those of the Snellen chart(R=0.274,P=0.005).CONCLUSION:The baby vision test can be used as a relatively reliable method for estimating VA in young children.This new acuity assessment might be a valid predictor of optotype-measured acuity later in preverbal children.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergenc...AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.展开更多
Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound vide...Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound video feed,provides BI-RADS categorizations;and has reliable sensitivity and specificity.Multiple deep-learning models were trained on more than 300,000 breast ultrasound images to achieve object detection and regions of interest classification.The main objective of this study was to determine whether the performance of our Al-powered solution was comparable to that of ultrasound radiologists.Methods:The noninferiority evaluation was conducted by comparing the examination results of the same screening women between our AI-powered solution and ultrasound radiologists with over 10 years of experience.The study lasted for one and a half years and was carried out in the Duanzhou District Women and Children's Hospital,Zhaoqing,China.1,133 females between 20 and 70 years old were selected through convenience sampling.Results:The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were 93.03%,94.90%,90.71%,92.68%,and 93.48%,respectively.The area under the curve(AUC)for all positives was 0.91569 and the AUC for all negatives was 0.90461.The comparison indicated that the overall performance of the AI system was comparable to that of ultrasound radiologists.Conclusion:This innovative AI-powered ultrasound solution is cost-effective and user-friendly,and could be applied to massive breast cancer screening.展开更多
A slight uneven settlement of the foundation may cause the wind turbine to shake,tilt,or even collapse,so it is increasingly necessary to realize remote condition monitoring of the foundations.At present,the wind turb...A slight uneven settlement of the foundation may cause the wind turbine to shake,tilt,or even collapse,so it is increasingly necessary to realize remote condition monitoring of the foundations.At present,the wind turbine foundation monitoring system is incomplete.The current monitoring research of the tower foundation is mainly of contact measurements,using acceleration sensors and static-level sensors for monitoring multiple reference points.Such monitoring methods will face some disadvantages,such as the complexity of monitoring deployment,the cost of manpower,and the load effect on the tower structure.To solve above issues,this paper aims to investigate wind turbine tower foundation variation dynamic monitoring based on machine vision.Machine vision monitoring is a kind of noncontact measurement,which helps to realize comprehensive diagnosis of early foundation uneven settlement and loose faults.The FEA model is firstly investigated as the theoretical foundation to investigate the dynamics of the tower foundation.Second,the Gaussian-based vibration detection is adopted by tracking the tower edge points.Finally,a tower structure with distributed foundation support is tested.The modal parameters obtained from the visual measurement are compared with those from the accelerometer,proving the vision method can effectively monitor the issues with tower foundation changes.展开更多
Damage detection is a key procedure in maintenance throughout structures′life cycles and post-disaster loss assessment.Due to the complex types of structural damages and the low efficiency and safety of manual detect...Damage detection is a key procedure in maintenance throughout structures′life cycles and post-disaster loss assessment.Due to the complex types of structural damages and the low efficiency and safety of manual detection,detecting damages with high efficiency and accuracy is the most popular research direction in civil engineering.Computer vision(CV)technology and deep learning(DL)algorithms are considered as promising tools to address the aforementioned challenges.The paper aims to systematically summarized the research and applications of DL-based CV technology in the field of damage detection in recent years.The basic concepts of DL-based CV technology are introduced first.The implementation steps of creating a damage detection dataset and some typical datasets are reviewed.CV-based structural damage detection algorithms are divided into three categories,namely,image classification-based(IC-based)algorithms,object detection-based(OD-based)algorithms,and semantic segmentation-based(SS-based)algorithms.Finally,the problems to be solved and future research directions are discussed.The foundation for promoting the deep integration of DL-based CV technology in structural damage detection and structural seismic damage identification has been laid.展开更多
In recent years, aquaculture industry in China is developing rapidly, and especially, China has the largest aquaculture area and the most output in the world. In the past, traditional aquaculture mainly depended on ma...In recent years, aquaculture industry in China is developing rapidly, and especially, China has the largest aquaculture area and the most output in the world. In the past, traditional aquaculture mainly depended on manual labour to breed and gain aquatic organisms. However, with the increasing scale of production and the continuous improvement of science and technology, the traditional aquaculture approach has become more and more unsuitable for the development of the times. With the rapid development of computer technology, computer vision technology infiltrates through the traditional aquaculture industry quickly and improves the aquaculture production efficiency .This paper mainly introduces the basic situation of computer vision technology and summarizes the application of computer vision technology in aquaculture industry at home and abroad. The paper concludes with the expectation of application of computer vision in the aquaculture.展开更多
Spodoptera frugiperda(Lepidoptera:Noctuidae)is an important migratory agricultural pest worldwide,which has invaded many countries in the Old World since 2016 and now poses a serious threat to world food security.The ...Spodoptera frugiperda(Lepidoptera:Noctuidae)is an important migratory agricultural pest worldwide,which has invaded many countries in the Old World since 2016 and now poses a serious threat to world food security.The present monitoring and early warning strategies for the fall army worm(FAW)mainly focus on adult population density,but lack an information technology platform for precisely forecasting the reproductive dynamics of the adults.In this study,to identify the developmental status of the adults,we first utilized female ovarian images to extract and screen five features combined with the support vector machine(SVM)classifier and employed male testes images to obtain the testis circular features.Then,we established models for the relationship between oviposition dynamics and the developmental time of adult reproductive organs using laboratory tests.The results show that the accuracy of female ovary development stage determination reached 91%.The mean standard error(MSE)between the actual and predicted values of the ovarian developmental time was 0.2431,and the mean error rate between the actual and predicted values of the daily oviposition quantity was 12.38%.The error rate for the recognition of testis diameter was 3.25%,and the predicted and actual values of the testis developmental time in males had an MSE of 0.7734.A WeChat applet for identifying the reproductive developmental state and predicting reproduction of S.frugiperda was developed by integrating the above research results,and it is now available for use by anyone involved in plant protection.This study developed an automated method for accurately forecasting the reproductive dynamics of S.frugiperda populations,which can be helpful for the construction of a population monitoring and early warning system for use by both professional experts and local people at the county level.展开更多
Due to its advantages of objectiveness, automation, accuracy and fastness in various applications, the technology of computer vision has become one of the studying hotspots in the area of the objective inspection and ...Due to its advantages of objectiveness, automation, accuracy and fastness in various applications, the technology of computer vision has become one of the studying hotspots in the area of the objective inspection and assessment of textiles apparent properties during the past two decades in the world. Both a brief review of its applications in the recent decade both at home and abroad to the automatic inspection and assessment of the various apparent properties of the textiles, such as yarn, woven fabrics and knitting fabrics, carpet fabrics, nonwoven fabrics and textile webs, etc., and a detailed introduction to the research work including the objective evaluation of fabric wrinkle grade, automatic fabric defects detection and assessment of fabric pilling grade, etc., that was conducted by our research section, i.e., Computer Vision’s Textiles Application Research Section, College of Textiles, Dong Hua University, have been provided. Experimental results have proved the feasibilities of the approaches used by us in the applications to the objective inspection and assessment of fabric apparent properties, and also indicated that the technology of computer vision is a power tool for the objective and automatic inspection and assessment of textiles apparent properties, and that it has a bright application future.展开更多
Aiming to improve the processes involved in the industrial beneficiation of the Brazilian nuts, this work used a new methodology based on concepts of computer vision and intelligent classification, with a focus on two...Aiming to improve the processes involved in the industrial beneficiation of the Brazilian nuts, this work used a new methodology based on concepts of computer vision and intelligent classification, with a focus on two of the various stages of the processing: classification according to the origin and selection. Using the proposed methodology for the selection of the nuts it was possible to distinguish between intact and broken nuts and between good and spoiled nuts with a very high percentage of correct identifications. Also to evaluate the efficiency of the proposed methodology, visual tests by human subjects were performed for the classification of the nuts, the results demonstrated that the intelligent techniques performed the same or better than the visual classification.展开更多
Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been su...Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-resea...With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-research progress on diagnosis of agricultural products, water diagnosis, weed identification,product quality testing and grading, agricultural picking and sorting and other as- pects, and finally put forward its existing problems and prospects for the future.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to prov...The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to provide rigidity to the entire eyeball.Therefore,good vision requires maintenance of the transparency and proper refractive shape of the cornea.The surface structures irregularities can be associated with wavefront aberrations and scattering errors.Light scattering in the human cornea causes a reduction of visual quality.In fact,the cornea must be transparent and maintain a smooth and stable curvature since it contributes to the major part of the focusing power of the eye.In most cases,a simple examination of visual acuity cannot demonstrate the reduction of visual quality secondary light scattering.In fact,clinical techniques for examining the human cornea in vivo have greatly expanded over the last few decades.The measurement of corneal back scattering qualifies the degree of corneal transparency.The measurement of corneal forward-scattering quantifies the amount of visual impairment that is produced by the alteration of transparency.The aim of this study was to review scattering in the human cornea and methods of measuring it.展开更多
The behavioral responses of a tilapia (Oreochromis niloticus) school to low (0.13 mg/L), moderate (0.79 mg/L) and high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were monitored using a computer vision...The behavioral responses of a tilapia (Oreochromis niloticus) school to low (0.13 mg/L), moderate (0.79 mg/L) and high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were monitored using a computer vision system. The swimming activity and geometrical parameters such as location of the gravity center and distribution of the fish school were calculated continuously. These behavioral parameters of tilapia school responded sensitively to moderate and high UIA concen-tration. Under high UIA concentration the fish activity showed a significant increase (P<0.05), exhibiting an avoidance reaction to high ammonia condition, and then decreased gradually. Under moderate and high UIA concentration the school’s vertical location had significantly large fluctuation (P<0.05) with the school moving up to the water surface then down to the bottom of the aquarium alternately and tending to crowd together. After several hours’ exposure to high UIA level, the school finally stayed at the aquarium bottom. These observations indicate that alterations in fish behavior under acute stress can provide important in-formation useful in predicting the stress.展开更多
The structure, function and working principle of JLUIV-3, which is a new typeof auto-mated guided vehicle (AGV) with computer vision, is described. The white stripe line withcertain width is used as inductive mark for...The structure, function and working principle of JLUIV-3, which is a new typeof auto-mated guided vehicle (AGV) with computer vision, is described. The white stripe line withcertain width is used as inductive mark for JLUIV-3 automated navigation. JULIV-3 can automaticallyrecognize the Arabic numeral codes which mark the multi-branch paths and multi-operation buffers,and autonomously select the correct path for destination. Compared with the traditional AGV, it hasmuch more navigation flexibility and less cost, and provides higher-level intelligence. Theidentification method of navigation path by using neural network and the optimal control method ofthe AGV are introduced in detail.展开更多
基金This paper was supported by National Natural Science Foundation of China (Grant No. 39670607).
文摘The classification of seedlings is important to ensure the viability of seedlings after transplantation and is acknowledged as a key factor in forestation and environmental improvement. Based on numerous papers on automatic seedling classification (ASC), the seedling grading theory, traditional grading methods, the background and the proceeding of ASC techniques are described. The automation of the measurement of seedling morphological characteristics by photoelectric meters and computer vision is studied, and the automatic methods of the current grading systems are described respectively. And the further researches on ASC by computer vision are proposed.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
基金support from the Deanship for Research&Innovation,Ministry of Education in Saudi Arabia,under the Auspices of Project Number:IFP22UQU4281768DSR122.
文摘Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
文摘AIM:To investigate the efficacy of a new visual acuity(VA)screening method,the baby vision test for young children.METHODS:A total 105 eyes of 65 children aged 2-8y were included in the study.Acuity testing was conducted using a standardized recognition acuity chart(Snellen visual chart:at 3 m)and the baby vision model assessment.The baby vision device includes a screen,a near infrared camera and a computer.Children were seated at a measured distance of 33-40 cm from a display for testing.VA was estimated according to the highest resolution the children could follow.Decimal VA data were converted to logarithm of the minimum angle of resolution(logMAR)for statistical analysis.The VA results for each child were recorded and analyzed for consistency.RESULTS:The mean VA measured using the Snellen visual chart was 0.62±0.32,and that assessed using the baby vision test was 0.66±0.27.The 95%limit of agreement was-0.609 to 0.695,with 95.2%(100/105)plots within the 95%limits of agreement.VA values of the baby vision test were significantly correlated with those of the Snellen chart(R=0.274,P=0.005).CONCLUSION:The baby vision test can be used as a relatively reliable method for estimating VA in young children.This new acuity assessment might be a valid predictor of optotype-measured acuity later in preverbal children.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
文摘AIM:To compare and analyse the diagnostic efficacy of the College of Optometrists Vision Development Quality of Life Questionnaire(COVD-QOL)and the Convergence Insufficiency Symptom Survey(CISS)in detecting convergence insufficiency and to compare their diagnostic value in clinical applications.METHODS:Using the diagnostic test method,62 adult patients with convergence insufficiency(age:24.74±3.75y)and 62 normal participants(age:23.61±3.13y)who visited the Optometry Clinic of West China Hospital of Sichuan University from April 2021 to January 2023 were included.All subjects completed the CISS and COVD-QOL.Statistical analysis of the sensitivity and specificity of the CISS and COVD-QOL and comparison and joint experimental analysis of their diagnostic efficacy were performed.RESULTS:The sensitivity of the CISS and COVD-QOL for convergence insufficiency was 64.5%and 71.0%,respectively,while the specificity was 96.8%and 67.7%,respectively.Compared to the CISS alone,the combination of the CISS and COVD-QOL demonstrated lower sensitivity and specificity.The areas under the receiver operating characteristic curve of CISS,COVD-QOL and CISS combined with COVD-QOL were 0.806,0.694 and 0.782,respectively.CONCLUSION:Considering the low sensitivity of the CISS and the low specificity of the COVD-QOL,it is recommended to supplement these questionnaires with other screening tests for the detection of convergence insufficiency.
文摘Objective:We propose a solution that is backed by cloud computing,combines a series of AI neural networks of computer vision;is capable of detecting,highlighting,and locating breast lesions from a live ultrasound video feed,provides BI-RADS categorizations;and has reliable sensitivity and specificity.Multiple deep-learning models were trained on more than 300,000 breast ultrasound images to achieve object detection and regions of interest classification.The main objective of this study was to determine whether the performance of our Al-powered solution was comparable to that of ultrasound radiologists.Methods:The noninferiority evaluation was conducted by comparing the examination results of the same screening women between our AI-powered solution and ultrasound radiologists with over 10 years of experience.The study lasted for one and a half years and was carried out in the Duanzhou District Women and Children's Hospital,Zhaoqing,China.1,133 females between 20 and 70 years old were selected through convenience sampling.Results:The accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were 93.03%,94.90%,90.71%,92.68%,and 93.48%,respectively.The area under the curve(AUC)for all positives was 0.91569 and the AUC for all negatives was 0.90461.The comparison indicated that the overall performance of the AI system was comparable to that of ultrasound radiologists.Conclusion:This innovative AI-powered ultrasound solution is cost-effective and user-friendly,and could be applied to massive breast cancer screening.
基金the support of the National Natural Science Foundation of China(NSFC)(62076029)Guangdong provincial base platforms and major scientific research project:Research on Remote Large Facility Condition Monitoring Method Based on Motion Amplification(ZX-2021-040)+1 种基金Major Scientific and Technological Project in the Inner Mongolia Autonomous Region(2023YFSW0003)the Guangdong Basic and Applied Basic Research Fund Offshore Wind Power Scheme-General Project under Grant 2022A1515240042.
文摘A slight uneven settlement of the foundation may cause the wind turbine to shake,tilt,or even collapse,so it is increasingly necessary to realize remote condition monitoring of the foundations.At present,the wind turbine foundation monitoring system is incomplete.The current monitoring research of the tower foundation is mainly of contact measurements,using acceleration sensors and static-level sensors for monitoring multiple reference points.Such monitoring methods will face some disadvantages,such as the complexity of monitoring deployment,the cost of manpower,and the load effect on the tower structure.To solve above issues,this paper aims to investigate wind turbine tower foundation variation dynamic monitoring based on machine vision.Machine vision monitoring is a kind of noncontact measurement,which helps to realize comprehensive diagnosis of early foundation uneven settlement and loose faults.The FEA model is firstly investigated as the theoretical foundation to investigate the dynamics of the tower foundation.Second,the Gaussian-based vibration detection is adopted by tracking the tower edge points.Finally,a tower structure with distributed foundation support is tested.The modal parameters obtained from the visual measurement are compared with those from the accelerometer,proving the vision method can effectively monitor the issues with tower foundation changes.
基金National Key R&D Program of China under Grant No.2017YFC1500606,National Natural Science Foundation of China under Grant No.52020105002Heilongjiang Touyan Innovation Team Program。
文摘Damage detection is a key procedure in maintenance throughout structures′life cycles and post-disaster loss assessment.Due to the complex types of structural damages and the low efficiency and safety of manual detection,detecting damages with high efficiency and accuracy is the most popular research direction in civil engineering.Computer vision(CV)technology and deep learning(DL)algorithms are considered as promising tools to address the aforementioned challenges.The paper aims to systematically summarized the research and applications of DL-based CV technology in the field of damage detection in recent years.The basic concepts of DL-based CV technology are introduced first.The implementation steps of creating a damage detection dataset and some typical datasets are reviewed.CV-based structural damage detection algorithms are divided into three categories,namely,image classification-based(IC-based)algorithms,object detection-based(OD-based)algorithms,and semantic segmentation-based(SS-based)algorithms.Finally,the problems to be solved and future research directions are discussed.The foundation for promoting the deep integration of DL-based CV technology in structural damage detection and structural seismic damage identification has been laid.
文摘In recent years, aquaculture industry in China is developing rapidly, and especially, China has the largest aquaculture area and the most output in the world. In the past, traditional aquaculture mainly depended on manual labour to breed and gain aquatic organisms. However, with the increasing scale of production and the continuous improvement of science and technology, the traditional aquaculture approach has become more and more unsuitable for the development of the times. With the rapid development of computer technology, computer vision technology infiltrates through the traditional aquaculture industry quickly and improves the aquaculture production efficiency .This paper mainly introduces the basic situation of computer vision technology and summarizes the application of computer vision technology in aquaculture industry at home and abroad. The paper concludes with the expectation of application of computer vision in the aquaculture.
基金supported by the National Natural Science Foundation of China(31727901)the National Key R&D Program of China(2021YFD1400702)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘Spodoptera frugiperda(Lepidoptera:Noctuidae)is an important migratory agricultural pest worldwide,which has invaded many countries in the Old World since 2016 and now poses a serious threat to world food security.The present monitoring and early warning strategies for the fall army worm(FAW)mainly focus on adult population density,but lack an information technology platform for precisely forecasting the reproductive dynamics of the adults.In this study,to identify the developmental status of the adults,we first utilized female ovarian images to extract and screen five features combined with the support vector machine(SVM)classifier and employed male testes images to obtain the testis circular features.Then,we established models for the relationship between oviposition dynamics and the developmental time of adult reproductive organs using laboratory tests.The results show that the accuracy of female ovary development stage determination reached 91%.The mean standard error(MSE)between the actual and predicted values of the ovarian developmental time was 0.2431,and the mean error rate between the actual and predicted values of the daily oviposition quantity was 12.38%.The error rate for the recognition of testis diameter was 3.25%,and the predicted and actual values of the testis developmental time in males had an MSE of 0.7734.A WeChat applet for identifying the reproductive developmental state and predicting reproduction of S.frugiperda was developed by integrating the above research results,and it is now available for use by anyone involved in plant protection.This study developed an automated method for accurately forecasting the reproductive dynamics of S.frugiperda populations,which can be helpful for the construction of a population monitoring and early warning system for use by both professional experts and local people at the county level.
文摘Due to its advantages of objectiveness, automation, accuracy and fastness in various applications, the technology of computer vision has become one of the studying hotspots in the area of the objective inspection and assessment of textiles apparent properties during the past two decades in the world. Both a brief review of its applications in the recent decade both at home and abroad to the automatic inspection and assessment of the various apparent properties of the textiles, such as yarn, woven fabrics and knitting fabrics, carpet fabrics, nonwoven fabrics and textile webs, etc., and a detailed introduction to the research work including the objective evaluation of fabric wrinkle grade, automatic fabric defects detection and assessment of fabric pilling grade, etc., that was conducted by our research section, i.e., Computer Vision’s Textiles Application Research Section, College of Textiles, Dong Hua University, have been provided. Experimental results have proved the feasibilities of the approaches used by us in the applications to the objective inspection and assessment of fabric apparent properties, and also indicated that the technology of computer vision is a power tool for the objective and automatic inspection and assessment of textiles apparent properties, and that it has a bright application future.
文摘Aiming to improve the processes involved in the industrial beneficiation of the Brazilian nuts, this work used a new methodology based on concepts of computer vision and intelligent classification, with a focus on two of the various stages of the processing: classification according to the origin and selection. Using the proposed methodology for the selection of the nuts it was possible to distinguish between intact and broken nuts and between good and spoiled nuts with a very high percentage of correct identifications. Also to evaluate the efficiency of the proposed methodology, visual tests by human subjects were performed for the classification of the nuts, the results demonstrated that the intelligent techniques performed the same or better than the visual classification.
基金Special Fund for Science & Technology Research of Education Commission,Chongqing(KJ101302)~~
文摘Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
文摘With the development of image processing technology and computer, computer vision technology has been widely used in the production of agriculture,and has made many important achievements. This paper reviews its-research progress on diagnosis of agricultural products, water diagnosis, weed identification,product quality testing and grading, agricultural picking and sorting and other as- pects, and finally put forward its existing problems and prospects for the future.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.
文摘The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to provide rigidity to the entire eyeball.Therefore,good vision requires maintenance of the transparency and proper refractive shape of the cornea.The surface structures irregularities can be associated with wavefront aberrations and scattering errors.Light scattering in the human cornea causes a reduction of visual quality.In fact,the cornea must be transparent and maintain a smooth and stable curvature since it contributes to the major part of the focusing power of the eye.In most cases,a simple examination of visual acuity cannot demonstrate the reduction of visual quality secondary light scattering.In fact,clinical techniques for examining the human cornea in vivo have greatly expanded over the last few decades.The measurement of corneal back scattering qualifies the degree of corneal transparency.The measurement of corneal forward-scattering quantifies the amount of visual impairment that is produced by the alteration of transparency.The aim of this study was to review scattering in the human cornea and methods of measuring it.
基金Project (Nos. 2001AA620104 and 2003AA603140) supported by theHi-Tech Research and Development Program (863) of China
文摘The behavioral responses of a tilapia (Oreochromis niloticus) school to low (0.13 mg/L), moderate (0.79 mg/L) and high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were monitored using a computer vision system. The swimming activity and geometrical parameters such as location of the gravity center and distribution of the fish school were calculated continuously. These behavioral parameters of tilapia school responded sensitively to moderate and high UIA concen-tration. Under high UIA concentration the fish activity showed a significant increase (P<0.05), exhibiting an avoidance reaction to high ammonia condition, and then decreased gradually. Under moderate and high UIA concentration the school’s vertical location had significantly large fluctuation (P<0.05) with the school moving up to the water surface then down to the bottom of the aquarium alternately and tending to crowd together. After several hours’ exposure to high UIA level, the school finally stayed at the aquarium bottom. These observations indicate that alterations in fish behavior under acute stress can provide important in-formation useful in predicting the stress.
基金This project is supported by National Natural Science Foundation of China(No.50175046) Technology Foundation of Education Ministry of China(No.00037).
文摘The structure, function and working principle of JLUIV-3, which is a new typeof auto-mated guided vehicle (AGV) with computer vision, is described. The white stripe line withcertain width is used as inductive mark for JLUIV-3 automated navigation. JULIV-3 can automaticallyrecognize the Arabic numeral codes which mark the multi-branch paths and multi-operation buffers,and autonomously select the correct path for destination. Compared with the traditional AGV, it hasmuch more navigation flexibility and less cost, and provides higher-level intelligence. Theidentification method of navigation path by using neural network and the optimal control method ofthe AGV are introduced in detail.