A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ...A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.展开更多
A robust adaptive predictor is proposed to solve the time-varying and delay control problem of an overhead crane system with a stereo-vision servo. The predictor is based on the use of a recurrent neural network(RNN) ...A robust adaptive predictor is proposed to solve the time-varying and delay control problem of an overhead crane system with a stereo-vision servo. The predictor is based on the use of a recurrent neural network(RNN) with tapped delays, and is used to supply the real-time signal of the swing angle. There are two types of discrete-time controllers under investigation, i.e., the proportional-integral-derivative(PID) controller and the sliding controller. Firstly, a design principle of the neural predictor is developed to guarantee the convergence of its swing angle estimation. Then, an improved version of the particle swarm optimization algorithm, the parallel particle swarm optimization(PPSO) method is used to optimize the control parameters of these two types of controllers. Finally, a homemade overhead crane system equipped with the Kinect sensor for the visual servo is used to verify the proposed scheme. Experimental results demonstrate the effectiveness of the approach, which also show the parameter convergence in the predictor.展开更多
An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the ...An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.展开更多
基金This project was supported by the research foundation of China Education Ministry for the scholars from abroad (2002247).
文摘A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.
基金supported by MOST under Grants No.104-2632-B-468-001,No.103-2221-E-468-009-MY2,No.104-2221-E-182-008-MY2,No.105-2221-E-468-009,No.106-2221-E-468-023,and No.106-2221-E-182-033Chang Gung Memorial Hospital,under Grants No.CMRPD2C0052 and No.CMRPD2C0053
文摘A robust adaptive predictor is proposed to solve the time-varying and delay control problem of an overhead crane system with a stereo-vision servo. The predictor is based on the use of a recurrent neural network(RNN) with tapped delays, and is used to supply the real-time signal of the swing angle. There are two types of discrete-time controllers under investigation, i.e., the proportional-integral-derivative(PID) controller and the sliding controller. Firstly, a design principle of the neural predictor is developed to guarantee the convergence of its swing angle estimation. Then, an improved version of the particle swarm optimization algorithm, the parallel particle swarm optimization(PPSO) method is used to optimize the control parameters of these two types of controllers. Finally, a homemade overhead crane system equipped with the Kinect sensor for the visual servo is used to verify the proposed scheme. Experimental results demonstrate the effectiveness of the approach, which also show the parameter convergence in the predictor.
基金the National Natural Science Foundation of China (No.60675048)Science and Technology Research Project of the Ministry of Education (No.204181).
文摘An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper. Our approach introduces an extension of Mendonca-Cipolla and G. Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix. Specifically, a suitable dynamic online cost function is generated according to the property of the three singular values. The visual servo process is carried out simultaneous to the dynamic self-calibration, and then the cost function is minimized using the adaptive genetic algorithm instead of the gradient descent method in G. Chesi's approach. Moreover, this method overcomes the limitation that the initial parameters must be selected close to the true value, which is not constant in many cases. It is not necessary to know exactly the camera intrinsic parameters when using our approach, instead, coarse coding bounds of the five parameters are enough for the algorithm, which can be done once and for all off-line. Besides, this algorithm does not require knowledge of the 3D model of the object. Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbations of camera parameters, and it is an effective and efficient visual servo algorithm.