Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verifi...Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verification during the R&D phase. The currently used simulation methods for lunar rovers have several disadvantages such as poor fidelity for wheel-soil interaction mechanics, difficulty in simulating rough terrains, and high complexity making it difficult to realize mobility control in simulation systems. This paper presents an approach for the construction of a virtual simulation system that integrates the features of 3D modeling, wheel-soil interaction mechanics, dynamics analysis, mobility control, and visualization for lunar rovers. Wheel-soil interaction experiments are carried out to test the forces and moments acted on a lunar rover’s wheel by the soil with a vertical load of 80 N and slip ratios of 0, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.6. The experimental results are referenced in order to set the parameters’ values for the PAC2002 tire model of the ADAMS/Tire module. In addition, the rough lunar terrain is simulated with 3DS Max software after analyzing its characteristics, and a data-transfer program is developed with Matlab to simulate the 3D reappearance of a lunar environment in ADAMS. The 3D model of a lunar rover is developed by using Pro/E software and is then imported into ADAMS. Finally, a virtual simulation system for lunar rovers is developed. A path-following control strategy based on slip compensation for a six-wheeled lunar rover prototype is researched. The controller is implemented by using Matlab/Simulink to carry out joint simulations with ADAMS. The designed virtual lunar rover could follow the planned path on a rough terrain. This paper can also provide a reference scheme for virtual simulation and performance analysis of rovers moving on rough lunar terrains.展开更多
A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cut...A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.展开更多
Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simu...Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.展开更多
Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can a...Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can automatically get such data to be analyzed and calculated, and then produce real-time simulation control information. Meanwhile, this paper designs relevant simulation components to implement the input and output data, which can guarantee the real-time and universal of the data transmission. Result of the experimental system shows that the real-time performance of the simulation is perfect.展开更多
Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on person...Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on personalized clinical computed tomography angiography(CTA)data,mesh models of the cardiovascular system were constructed semi-automatically.By coupling 4 D magnetic resonance imaging(MRI)sequences corresponding to a complete cardiac cycle with related physics models,a hybrid kinetic model of the cardiovascular system was built to drive kinematics and dynamics simulation.On that basis,the surgical procedures related to intervention instruments were simulated using specially-designed physics models.These models can be solved in real-time;therefore,the complex interactions between blood vessels and instruments can be well simulated.Additionally,X-ray imaging simulation algorithms and realistic rendering algorithms for virtual intervention scenes are also proposed.In particular,instrument tracking hardware with haptic feedback was developed to serve as the interaction interface of real instruments and the virtual intervention system.Finally,a personalized cardiovascular intervention simulation system was developed by integrating the techniques mentioned above.Results This system supported instant modeling and simulation of personalized clinical data and significantly improved the visual and haptic immersions of vascular intervention simulation.Conclusions It can be used in teaching basic cardiology and effectively satisfying the demands of intervention training,personalized intervention planning,and rehearsing.展开更多
In order to research on the design and implementation of a modernized GPS civil signals simulation system,a brief review of the modernized GPS signals is introduced,including the signal structure and characteristics o...In order to research on the design and implementation of a modernized GPS civil signals simulation system,a brief review of the modernized GPS signals is introduced,including the signal structure and characteristics of L2C,L5 and L1C signals.The design and implementation of the main modules of the simulation system is described in detail.The simulation system is mainly composed of parameter setting,system initialization,signal generator,noise generator,disturbance generator,signal synthesis,low-pass filter,A/D conversion and storage.The simulation results based on Matlab are then presented,and the power spectral density(PSD) of all navigation signals is analyzed.The simulation system completes the physical layer simulation of a modernized GPS new civil signal and can provide a controllable signal source for designing and testing of modernized GPS civil receivers,especially for the signal processing algorithm design of the GPS software receiver.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
Vision-simulated imagery―the process of generating images that mimic the human visual system―is a valuable tool with a wide spectrum of possible applications, including visual acuity measurements, personalized plann...Vision-simulated imagery―the process of generating images that mimic the human visual system―is a valuable tool with a wide spectrum of possible applications, including visual acuity measurements, personalized planning of corrective lenses and surgeries, vision-correcting displays, vision-related hardware development, and extended reality discomfort reduction. A critical property of human vision is that it is imperfect because of the highly influential wavefront aberrations that vary from person to person. This study provides an overview of the existing computational image generation techniques that properly simulate human vision in the presence of wavefront aberrations. These algorithms typically apply ray tracing with a detailed description of the simulated eye or utilize the point-spread func-tion of the eye to perform convolution on the input image. Based on the description of the vision simulation tech-niques, several of their characteristic features have been evaluated and some potential application areas and research directions have been outlined.展开更多
Despite the support of all kinds of fire prevention measures and high-tech fire prevention equipment,fires still occur frequently because of both anthro-pogenic factors and natural disasters.This issue has drawn the a...Despite the support of all kinds of fire prevention measures and high-tech fire prevention equipment,fires still occur frequently because of both anthro-pogenic factors and natural disasters.This issue has drawn the attention of schools,all levels of government,and other organizations.Many types of organi-zations carry out fire drills throughout the year.Because this kind of drill cannot anticipate the specific circumstances of each fire,which are generally far more complicated than drills,most people cannot correctly choose the optimal escape route from real fires.Thus,a fire-scene virtual simulation system based on the Dijkstra algorithm is here proposed to address such problems as casualties caused by frequent fires and the inability of most people to correctly choose a fire escape route.This virtual fire escape simulation system uses Maya to carry out 3D recon-struction of the fire scene,the Unity engine to conduct interactive function design,and the Dijkstra algorithm to calculate the best escape route.The results of the example indicate that the simulation system solves the problems of the traditional simulation system,such as stiffness,lack of intelligence,and poor simulation.展开更多
he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D...he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.展开更多
The constructing method of a simulation system is discussed in this paper. It is for a Decision Support System (DSS) of main in-process warehouse on a large scale flexible production line. This system is decomposed in...The constructing method of a simulation system is discussed in this paper. It is for a Decision Support System (DSS) of main in-process warehouse on a large scale flexible production line. This system is decomposed into three function blocks: DSS, support environment for simulation, simulating dispatch module. It has a fine structure and works coordinatively to complete whatever assignment for simulation tasks of a complicated production system.展开更多
To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowle...To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.展开更多
A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate t...A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.展开更多
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to subs...Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.展开更多
In this paper, the integrated software system named PRDII(Project Range Distribution of Ion Implantation), which is based on the transport theory and Monte Carlo method and is developed by ourselves for range distribu...In this paper, the integrated software system named PRDII(Project Range Distribution of Ion Implantation), which is based on the transport theory and Monte Carlo method and is developed by ourselves for range distribution of ion implantation, is introduced. The system generally possess versatility., efficiency and practicality. As for versatility, the system can build and utilize the parameter bank of various ions and material bank of various parts, can calculate the range distributions of implanted ions in the target for various conditions, such as for different incident ions, for different compositions and shapes of targets, for different energies.. doses and angles of incidence; As for efficiency, the computations are accelerated greatly by using some numerical simulating formulae instead of numerical iterative solutions in key procedure and using fixed fly path instead of random fly path; As for practicality, the preassumptions of the simulation are more close to the reality and the simulating results are more accurate in that the sputtering and the dynamic changes of target composition during penetration are considered and the advanced Monte Carlo method is used. Compared to other similar software, such as famous TRIM[1] and SASAMAL[2], it is more beautiful for interface, more convenient for operation, It can call, compute.. compare.. comment, copy and print all curves needed, and the simulating results consist with the experiments very well.展开更多
Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protoc...Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protocol( AMQP) is proposed to integrate naval distributed tactical training simulation system after serious consideration with current information exchange features of military combat system. Transferring layer in traditional user datagram protocol is implemented by publishing and subscribing scheme of message middleware. By creating message model to standardize message structure,integration architecture is formulated to resolve potential information security risks from inconsistent data type and express data transmission. Meanwhile,a communication model is put forward based on AMQP,which is in the center position of the whole transmission framework and responsible for reliably transferring battlefield data among subsystems. Experiments show that the method can accurately post amounts of data to the subscriber without error and loss,and can get excellent real-time performance of data exchange.展开更多
In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, th...In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.展开更多
In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and th...In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.展开更多
The principle of the stretch reducing process is analyzed and three models of pass design are established. The simulations are done about variables, such as, stress, strain, the stretches between the stands, the size ...The principle of the stretch reducing process is analyzed and three models of pass design are established. The simulations are done about variables, such as, stress, strain, the stretches between the stands, the size parameters of the steel tube, and the roll force parameters. According to its product catalogs the system can automatically divide the pass series, formulate the rolling table, and simulate the basic technological parameters in the stretch reducing process. All modules are integrated based on the developing environment of VB6. The system can draw simulation curves and pass pictures. Three kinds of database including the material database, pass design database, and product database are devised using Microsoft Access, which can be directly edited, corrected, and searched.展开更多
Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the a...Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50975059, Grant No. 61005080)Postdoctoral Foundation of China (Grant No. 20100480994)+1 种基金Postdoctoral Foundation of Heilongjiang Province, Foundation of Chinese State Key Laboratory of Robotics and Systems (Grant No. SKLRS200801A02)College Discipline Innovation Wisdom Plan of China (111 Project, Grant No. B07018)
文摘Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verification during the R&D phase. The currently used simulation methods for lunar rovers have several disadvantages such as poor fidelity for wheel-soil interaction mechanics, difficulty in simulating rough terrains, and high complexity making it difficult to realize mobility control in simulation systems. This paper presents an approach for the construction of a virtual simulation system that integrates the features of 3D modeling, wheel-soil interaction mechanics, dynamics analysis, mobility control, and visualization for lunar rovers. Wheel-soil interaction experiments are carried out to test the forces and moments acted on a lunar rover’s wheel by the soil with a vertical load of 80 N and slip ratios of 0, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.6. The experimental results are referenced in order to set the parameters’ values for the PAC2002 tire model of the ADAMS/Tire module. In addition, the rough lunar terrain is simulated with 3DS Max software after analyzing its characteristics, and a data-transfer program is developed with Matlab to simulate the 3D reappearance of a lunar environment in ADAMS. The 3D model of a lunar rover is developed by using Pro/E software and is then imported into ADAMS. Finally, a virtual simulation system for lunar rovers is developed. A path-following control strategy based on slip compensation for a six-wheeled lunar rover prototype is researched. The controller is implemented by using Matlab/Simulink to carry out joint simulations with ADAMS. The designed virtual lunar rover could follow the planned path on a rough terrain. This paper can also provide a reference scheme for virtual simulation and performance analysis of rovers moving on rough lunar terrains.
文摘A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.
文摘Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.
文摘Based on MATRIXx, a universal real-time visual distributed simulation system is developed. The system can receive different input data from network or local terminal. Application models in the simulation modules can automatically get such data to be analyzed and calculated, and then produce real-time simulation control information. Meanwhile, this paper designs relevant simulation components to implement the input and output data, which can guarantee the real-time and universal of the data transmission. Result of the experimental system shows that the real-time performance of the simulation is perfect.
基金the Beijing Natural Science Foundation-Haidian Primitive Innovation Joint Fund(L 182016)Natural Science Foundation of China(61672077,61532002)Applied Basic Research Program of Qingdao(161013 xx).
文摘Background This study proposes a series of geometry and physics modeling methods for personalized cardiovascular intervention procedures,which can be applied to a virtual endovascular simulator.Methods Based on personalized clinical computed tomography angiography(CTA)data,mesh models of the cardiovascular system were constructed semi-automatically.By coupling 4 D magnetic resonance imaging(MRI)sequences corresponding to a complete cardiac cycle with related physics models,a hybrid kinetic model of the cardiovascular system was built to drive kinematics and dynamics simulation.On that basis,the surgical procedures related to intervention instruments were simulated using specially-designed physics models.These models can be solved in real-time;therefore,the complex interactions between blood vessels and instruments can be well simulated.Additionally,X-ray imaging simulation algorithms and realistic rendering algorithms for virtual intervention scenes are also proposed.In particular,instrument tracking hardware with haptic feedback was developed to serve as the interaction interface of real instruments and the virtual intervention system.Finally,a personalized cardiovascular intervention simulation system was developed by integrating the techniques mentioned above.Results This system supported instant modeling and simulation of personalized clinical data and significantly improved the visual and haptic immersions of vascular intervention simulation.Conclusions It can be used in teaching basic cardiology and effectively satisfying the demands of intervention training,personalized intervention planning,and rehearsing.
基金The National Natural Science Foundation of China (No.41104015)Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education (No.201011)
文摘In order to research on the design and implementation of a modernized GPS civil signals simulation system,a brief review of the modernized GPS signals is introduced,including the signal structure and characteristics of L2C,L5 and L1C signals.The design and implementation of the main modules of the simulation system is described in detail.The simulation system is mainly composed of parameter setting,system initialization,signal generator,noise generator,disturbance generator,signal synthesis,low-pass filter,A/D conversion and storage.The simulation results based on Matlab are then presented,and the power spectral density(PSD) of all navigation signals is analyzed.The simulation system completes the physical layer simulation of a modernized GPS new civil signal and can provide a controllable signal source for designing and testing of modernized GPS civil receivers,especially for the signal processing algorithm design of the GPS software receiver.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
文摘Vision-simulated imagery―the process of generating images that mimic the human visual system―is a valuable tool with a wide spectrum of possible applications, including visual acuity measurements, personalized planning of corrective lenses and surgeries, vision-correcting displays, vision-related hardware development, and extended reality discomfort reduction. A critical property of human vision is that it is imperfect because of the highly influential wavefront aberrations that vary from person to person. This study provides an overview of the existing computational image generation techniques that properly simulate human vision in the presence of wavefront aberrations. These algorithms typically apply ray tracing with a detailed description of the simulated eye or utilize the point-spread func-tion of the eye to perform convolution on the input image. Based on the description of the vision simulation tech-niques, several of their characteristic features have been evaluated and some potential application areas and research directions have been outlined.
文摘Despite the support of all kinds of fire prevention measures and high-tech fire prevention equipment,fires still occur frequently because of both anthro-pogenic factors and natural disasters.This issue has drawn the attention of schools,all levels of government,and other organizations.Many types of organi-zations carry out fire drills throughout the year.Because this kind of drill cannot anticipate the specific circumstances of each fire,which are generally far more complicated than drills,most people cannot correctly choose the optimal escape route from real fires.Thus,a fire-scene virtual simulation system based on the Dijkstra algorithm is here proposed to address such problems as casualties caused by frequent fires and the inability of most people to correctly choose a fire escape route.This virtual fire escape simulation system uses Maya to carry out 3D recon-struction of the fire scene,the Unity engine to conduct interactive function design,and the Dijkstra algorithm to calculate the best escape route.The results of the example indicate that the simulation system solves the problems of the traditional simulation system,such as stiffness,lack of intelligence,and poor simulation.
基金supported by the Korea Institute of Marine Science & Technology promotion (KIMST)
文摘he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.
文摘The constructing method of a simulation system is discussed in this paper. It is for a Decision Support System (DSS) of main in-process warehouse on a large scale flexible production line. This system is decomposed into three function blocks: DSS, support environment for simulation, simulating dispatch module. It has a fine structure and works coordinatively to complete whatever assignment for simulation tasks of a complicated production system.
基金supported by the National Natural Science Foundation of China(61273198)
文摘To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.
文摘A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.
基金supported by National Natural Science Foundation of China(Grant No.50908008)National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA11Z216)
文摘Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.
文摘In this paper, the integrated software system named PRDII(Project Range Distribution of Ion Implantation), which is based on the transport theory and Monte Carlo method and is developed by ourselves for range distribution of ion implantation, is introduced. The system generally possess versatility., efficiency and practicality. As for versatility, the system can build and utilize the parameter bank of various ions and material bank of various parts, can calculate the range distributions of implanted ions in the target for various conditions, such as for different incident ions, for different compositions and shapes of targets, for different energies.. doses and angles of incidence; As for efficiency, the computations are accelerated greatly by using some numerical simulating formulae instead of numerical iterative solutions in key procedure and using fixed fly path instead of random fly path; As for practicality, the preassumptions of the simulation are more close to the reality and the simulating results are more accurate in that the sputtering and the dynamic changes of target composition during penetration are considered and the advanced Monte Carlo method is used. Compared to other similar software, such as famous TRIM[1] and SASAMAL[2], it is more beautiful for interface, more convenient for operation, It can call, compute.. compare.. comment, copy and print all curves needed, and the simulating results consist with the experiments very well.
基金Supported by the National Natural Science Foundation of China(No.61401496)
文摘Aiming at the problems of unreliable data transmission,poor steadiness,nonsupport of complex data types,direct couple between data transmission and exchange,a high-level method based on advanced message queuing protocol( AMQP) is proposed to integrate naval distributed tactical training simulation system after serious consideration with current information exchange features of military combat system. Transferring layer in traditional user datagram protocol is implemented by publishing and subscribing scheme of message middleware. By creating message model to standardize message structure,integration architecture is formulated to resolve potential information security risks from inconsistent data type and express data transmission. Meanwhile,a communication model is put forward based on AMQP,which is in the center position of the whole transmission framework and responsible for reliably transferring battlefield data among subsystems. Experiments show that the method can accurately post amounts of data to the subscriber without error and loss,and can get excellent real-time performance of data exchange.
文摘In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.18JK0286)Weinan Science and Technology Initiatives Fund program(Program No.2019JCYJ-2-6)+2 种基金Teaching Reform Project of Weinan Normal University(Program No.JG201704)Industry-University-Cooperation Education Project of the Ministry of Education of China(Program No.201702030020,201801082110)Weinan Normal University's Characteristic Discipline Construction Project Electronic Information(Computer Technology)Master's Degree Point Construction Project(18TSXK06)。
文摘In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.
基金the Ninth Five-Year Plan Subject for Science and Technology Development of China(No.95-528-02-02-02E)Shanxi Provincial Natural Science Foundation of China(Nos.20001053 and 2006011060)Taiyuan Science and Technology Attack Project(2006).
文摘The principle of the stretch reducing process is analyzed and three models of pass design are established. The simulations are done about variables, such as, stress, strain, the stretches between the stands, the size parameters of the steel tube, and the roll force parameters. According to its product catalogs the system can automatically divide the pass series, formulate the rolling table, and simulate the basic technological parameters in the stretch reducing process. All modules are integrated based on the developing environment of VB6. The system can draw simulation curves and pass pictures. Three kinds of database including the material database, pass design database, and product database are devised using Microsoft Access, which can be directly edited, corrected, and searched.
文摘Fuze is the information processing and control unit of the ammunition, so the quality of the fuze becomes one of the most important aspects of ammunition detection. Since using recoil force is a common method to the arm fuze, its dynamic simulation test has always been the focus of the fuze test research. A new fuze recoil environmental simulation method is proposed based on the electromagnetic launcher. Then the trigger control characteristics of the fuze recoil simulation system and the influence of the trigger position on the recoil force are studied. The results of the study show that although the pulse width of the armature force curve can be changed by adjusting the trigger position, due to the limit of the range, there also exists the contradiction that the electromagnetic pulse width gets narrow with the increase of electromagnetic force peak. Thus, it cannot meet the requirements of the fuze launch recoil simulation. In order to make the recoil force close to the actual environment, the multi-stage trigger control characteristics are analyzed, and the influence of trigger position on recoil environmental force characteristics is studied. Then a fuze launch recoil environmental simulation platform is established and continuous electromagnetic force is achieved by using the trigger strategy. Finally, the experiment is performed to simulate the fuze launch recoil environment and show the feasibility and effectiveness of the proposed theoretical analysis. The major research work of this paper includes studying the composition and basic principle of the simulation system, establishing a launch model to analyze the single-stage and multi-stage coil fuze launch recoil characteristics, designing the test device to verify the correctness and validity of the research. This paper draws the conclusions that the feasibility of the fuze launch environmental simulation based on the electromagnetic launcher is verified, the trigger position has a great influence on force peak continuity, the problems of low maximum overload peak and short peak duration in the multi-stage coil fuze launch environmental simulation can be effectively solved through adjusting the trigger position, the system has creative and extensive application prospects.