Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micr...In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.展开更多
A system for mobile robot localization and navigation was presented.With the proposed system,the robot can be located and navigated by a single landmark in a single image.And the navigation mode may be following-track...A system for mobile robot localization and navigation was presented.With the proposed system,the robot can be located and navigated by a single landmark in a single image.And the navigation mode may be following-track,teaching and playback,or programming.The basic idea is that the system computes the differences between the expected and the recognized position at each time and then controls the robot in a direction to reduce those differences.To minimize the robot sensor equipment,only one omnidirectional camera was used.Experiments in disturbing environments show that the presented algorithm is robust and easy to implement,without camera rectification.The rootmean-square error(RMSE) of localization is 1.4,cm,and the navigation error in teaching and playback is within 10,cm.展开更多
A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guar...A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method.展开更多
In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based o...In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.展开更多
Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes grea...Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes great contributions to safe-driving. This paper presents a method which can be used to detect preceding vehicles and get the distance between own car and the car ahead. Firstly, an adaptive threshold method is used to get shadow feature, and a shadow!area merging approach is used to deal with the distortion of the shadow border. Region of interest(ROI) is obtained using shadow feature. Then in the ROI, symmetry feature is analyzed to verify whether there are vehicles and to locate the vehicles. Finally, using monocular vision distance measurement based on camera interior parameters and geometrical reasoning, we get the distance between own car and the preceding one. Experimental results show that the proposed method can detect the preceding vehicle effectively and get the distance between vehicles accurately.展开更多
Background:We investigate whether changes in visual plasticity induced by monocular deprivation can be maintained across multiple days.It has been known that monocular deprivation strengthens the deprived eye in adult...Background:We investigate whether changes in visual plasticity induced by monocular deprivation can be maintained across multiple days.It has been known that monocular deprivation strengthens the deprived eye in adults with normal vision for a short period of time(30-60 minutes).This has been shown through a variety of visual tasks such as binocular combination and rivalry.Methods:Ten subjects were recruited and patched for five consecutive days for two hours.We used a binocular phase combination task to measure the subjects’sensory eye balances.We initially measured their baseline of sensory eye balance,patched their dominant eye,and then conducted post-patching measurements at 0,3,6,12,24 and 48 minutes after patching.Results:We performed a 2-way ANOVA(Before vs.after patching×Day);we found that although the effect of monocular deprivation on the deprived eye was significant,F(1,9)=17.32,P=0.002,the effect of Day was not.Conclusions:Hence we found no accumulation of the patching effect across five days in healthy adults.This suggests that the degree of remnant neural plasticity in adult primary visual cortex may be too limited to be exploited therapeutically.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL...针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL)的深度学习模型,ViTL模型集成了双路Vision-Transformer特征提取、时空特征融合和长短期记忆递归神经网络(LSTM)时序分类等3个关键模块,双路Vision-Transformer特征提取模块用于捕获图像的时空特征相关性,一路提取空间分类特征,一路提取时间变化特征;时空特征融合模块用于将多时特征信息进行交叉融合;LSTM时序分类模块捕捉多时序的依赖关系并进行输出分类。综合利用基于多时序卫星影像的遥感技术理论和方法,对黑龙江省齐齐哈尔市讷河市作物信息进行提取,研究结果表明,ViTL模型表现出色,其总体准确率(Overall Accuracy,OA)、平均交并比(Mean Intersection over Union,MIoU)和F1分数分别达到0.8676、0.6987和0.8175,与其他广泛使用的深度学习方法相比,包括三维卷积神经网络(3-D CNN)、二维卷积神经网络(2-D CNN)和长短期记忆递归神经网络(LSTM),ViTL模型的F1分数提高了9%~12%,显示出显著的优越性。ViTL模型克服了面对多时序遥感影像的农作物分类任务中的时间和空间信息特征采样不足问题,为准确、高效地农作物分类提供了新思路。展开更多
With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply ...With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.展开更多
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(2009BAG13A04)Jiangsu Transportation Science Research Program(No.08X09)Program of Suzhou Science and Technology(No.SG201076)
文摘In order to decrease vehicle crashes, a new rear view vehicle detection system based on monocular vision is designed. First, a small and flexible hardware platform based on a DM642 digtal signal processor (DSP) micro-controller is built. Then, a two-step vehicle detection algorithm is proposed. In the first step, a fast vehicle edge and symmetry fusion algorithm is used and a low threshold is set so that all the possible vehicles have a nearly 100% detection rate (TP) and the non-vehicles have a high false detection rate (FP), i. e., all the possible vehicles can be obtained. In the second step, a classifier using a probabilistic neural network (PNN) which is based on multiple scales and an orientation Gabor feature is trained to classify the possible vehicles and eliminate the false detected vehicles from the candidate vehicles generated in the first step. Experimental results demonstrate that the proposed system maintains a high detection rate and a low false detection rate under different road, weather and lighting conditions.
基金Supported by National Natural Science Foundation of China (No. 31000422 and No. 61201081)Tianjin Municipal Education Commission(No.20110829)Tianjin Science and Technology Committee(No. 10JCZDJC22800)
文摘A system for mobile robot localization and navigation was presented.With the proposed system,the robot can be located and navigated by a single landmark in a single image.And the navigation mode may be following-track,teaching and playback,or programming.The basic idea is that the system computes the differences between the expected and the recognized position at each time and then controls the robot in a direction to reduce those differences.To minimize the robot sensor equipment,only one omnidirectional camera was used.Experiments in disturbing environments show that the presented algorithm is robust and easy to implement,without camera rectification.The rootmean-square error(RMSE) of localization is 1.4,cm,and the navigation error in teaching and playback is within 10,cm.
基金The National High Technology Research and Development Program (863) of China (No2006AA04Z259)The National Natural Sci-ence Foundation of China (No60643005)
文摘A hierarchical mobile robot simultaneous localization and mapping (SLAM) method that allows us to obtain accurate maps was presented. The local map level is composed of a set of local metric feature maps that are guaranteed to be statistically independent. The global level is a topological graph whose arcs are labeled with the relative location between local maps. An estimation of these relative locations is maintained with local map alignment algorithm, and more accurate estimation is calculated through a global minimization procedure using the loop closure constraint. The local map is built with Rao-Blackwellised particle filter (RBPF), where the particle filter is used to extending the path posterior by sampling new poses. The landmark position estimation and update is implemented through extended Kalman filter (EKF). Monocular vision mounted on the robot tracks the 3D natural point landmarks, which are structured with matching scale invariant feature transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-tree in the time cost of O(lbN). Experiment results on Pioneer mobile robot in a real indoor environment show the superior performance of our proposed method.
基金National Science and Technology Major Project of China(No.2016ZX04003001)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCZDJC39700)
文摘In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.
基金Key Projects in the Tianjin Science & Technology Pillay Program
文摘Vehicle anti-collision technique is a hot topic in the research area of Intelligent Transport System. The research on preceding vehicles detection and the distance measurement, which are the key techniques, makes great contributions to safe-driving. This paper presents a method which can be used to detect preceding vehicles and get the distance between own car and the car ahead. Firstly, an adaptive threshold method is used to get shadow feature, and a shadow!area merging approach is used to deal with the distortion of the shadow border. Region of interest(ROI) is obtained using shadow feature. Then in the ROI, symmetry feature is analyzed to verify whether there are vehicles and to locate the vehicles. Finally, using monocular vision distance measurement based on camera interior parameters and geometrical reasoning, we get the distance between own car and the preceding one. Experimental results show that the proposed method can detect the preceding vehicle effectively and get the distance between vehicles accurately.
文摘Background:We investigate whether changes in visual plasticity induced by monocular deprivation can be maintained across multiple days.It has been known that monocular deprivation strengthens the deprived eye in adults with normal vision for a short period of time(30-60 minutes).This has been shown through a variety of visual tasks such as binocular combination and rivalry.Methods:Ten subjects were recruited and patched for five consecutive days for two hours.We used a binocular phase combination task to measure the subjects’sensory eye balances.We initially measured their baseline of sensory eye balance,patched their dominant eye,and then conducted post-patching measurements at 0,3,6,12,24 and 48 minutes after patching.Results:We performed a 2-way ANOVA(Before vs.after patching×Day);we found that although the effect of monocular deprivation on the deprived eye was significant,F(1,9)=17.32,P=0.002,the effect of Day was not.Conclusions:Hence we found no accumulation of the patching effect across five days in healthy adults.This suggests that the degree of remnant neural plasticity in adult primary visual cortex may be too limited to be exploited therapeutically.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.
文摘针对当前遥感农作物分类研究中深度学习模型对光谱时间和空间信息特征采样不足,农作物提取仍然存在边界模糊、漏提、误提的问题,提出了一种名为视觉Transformer-长短期记忆递归神经网络(Vision Transformer-long short term memory,ViTL)的深度学习模型,ViTL模型集成了双路Vision-Transformer特征提取、时空特征融合和长短期记忆递归神经网络(LSTM)时序分类等3个关键模块,双路Vision-Transformer特征提取模块用于捕获图像的时空特征相关性,一路提取空间分类特征,一路提取时间变化特征;时空特征融合模块用于将多时特征信息进行交叉融合;LSTM时序分类模块捕捉多时序的依赖关系并进行输出分类。综合利用基于多时序卫星影像的遥感技术理论和方法,对黑龙江省齐齐哈尔市讷河市作物信息进行提取,研究结果表明,ViTL模型表现出色,其总体准确率(Overall Accuracy,OA)、平均交并比(Mean Intersection over Union,MIoU)和F1分数分别达到0.8676、0.6987和0.8175,与其他广泛使用的深度学习方法相比,包括三维卷积神经网络(3-D CNN)、二维卷积神经网络(2-D CNN)和长短期记忆递归神经网络(LSTM),ViTL模型的F1分数提高了9%~12%,显示出显著的优越性。ViTL模型克服了面对多时序遥感影像的农作物分类任务中的时间和空间信息特征采样不足问题,为准确、高效地农作物分类提供了新思路。
文摘With the rapid development of drones and autonomous vehicles, miniaturized and lightweight vision sensors that can track targets are of great interests. Limited by the flat structure, conventional image sensors apply a large number of lenses to achieve corresponding functions, increasing the overall volume and weight of the system.