Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly...Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.展开更多
针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将...针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将语义分割网络PP-LiteSeg集成到系统前端,并根据语义分割结果去除动态特征点;其次,在后端利用像素语义概率构建语义概率误差约束项,并使用特征点自适应权重,提出了新的BA代价函数和相机外参优化策略,提高了状态估计的准确度;最后,为验证该算法的有效性,在VIODE和NTU VIRAL数据集上进行实验。实验结果表明,与目前先进的视觉惯性SLAM算法相比,该算法在动态场景和静态场景的定位精度和鲁棒性均有一定优势。展开更多
针对视觉传感器采集到的图像进行三维人体姿态估计,提出一种双循环Transformer网络模型,有效地从二维关键关节点中提取时空维度高相关性特征,增大感受野,从而提高三维姿态估计的精度。通过在视觉传感器采集得到的公开数据集Human3.6M上...针对视觉传感器采集到的图像进行三维人体姿态估计,提出一种双循环Transformer网络模型,有效地从二维关键关节点中提取时空维度高相关性特征,增大感受野,从而提高三维姿态估计的精度。通过在视觉传感器采集得到的公开数据集Human3.6M上的仿真实验,验证了双循环Transformer算法的性能。分析结果表明,最终估计得到的三维人体关节点的平均关节点位置偏差MPJPE(Mean Per Joint Position Error)为41.6 mm,相比于现有方法有一定提升,可以应用到许多下游相关工作中,有着较强的应用价值。展开更多
基金This project is supported by National Electric Power Corporation Foundation of China(No.SPKJ010-27).
文摘Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.
文摘针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将语义分割网络PP-LiteSeg集成到系统前端,并根据语义分割结果去除动态特征点;其次,在后端利用像素语义概率构建语义概率误差约束项,并使用特征点自适应权重,提出了新的BA代价函数和相机外参优化策略,提高了状态估计的准确度;最后,为验证该算法的有效性,在VIODE和NTU VIRAL数据集上进行实验。实验结果表明,与目前先进的视觉惯性SLAM算法相比,该算法在动态场景和静态场景的定位精度和鲁棒性均有一定优势。
文摘针对视觉传感器采集到的图像进行三维人体姿态估计,提出一种双循环Transformer网络模型,有效地从二维关键关节点中提取时空维度高相关性特征,增大感受野,从而提高三维姿态估计的精度。通过在视觉传感器采集得到的公开数据集Human3.6M上的仿真实验,验证了双循环Transformer算法的性能。分析结果表明,最终估计得到的三维人体关节点的平均关节点位置偏差MPJPE(Mean Per Joint Position Error)为41.6 mm,相比于现有方法有一定提升,可以应用到许多下游相关工作中,有着较强的应用价值。