This study investigated the effectiveness of spatial-visualization-based instruction on the mathematical problem-solving performance of 35 mathematics education students using one-group pretest-posttest quasi-experime...This study investigated the effectiveness of spatial-visualization-based instruction on the mathematical problem-solving performance of 35 mathematics education students using one-group pretest-posttest quasi-experimental design. It also aimed to describe how spatial visualization is applied in solving mathematical problems. The findings of the study revealed that spatial-visualization-based instruction improved the mathematical problem-solving performance of students. The spatial-visualization ability can be applied in solving mathematical problems.展开更多
This paper looks at student's view of the usefulness of a problem solving and programming module in the first year of a 3-year undergraduate program.The School of Science and Technology,University of Northampton,U...This paper looks at student's view of the usefulness of a problem solving and programming module in the first year of a 3-year undergraduate program.The School of Science and Technology,University of Northampton,UK has been investigating,over the last seven years the teaching of problem solving.Including looking at whether a more visual approach has any benefits(the visual programming includes both 2-d and graphical user interfaces).Whilst the authors have discussed the subject problem solving and programming in the past [1] this paper considers the students perspective from research collected/collated by a student researcher under a new initiative within the University.All students interviewed either had completed the module within the two years of the survey or were completing the problem-solving module in their first year.展开更多
Big data is a term that refers to a set of data that,due to its largeness or complexity,cannot be stored or processed with one of the usual tools or applications for data management,and it has become a prominent word...Big data is a term that refers to a set of data that,due to its largeness or complexity,cannot be stored or processed with one of the usual tools or applications for data management,and it has become a prominent word in recent years for the massive development of technology.Almost immediately thereafter,the term“big data mining”emerged,i.e.,mining from big data even as an emerging and interconnected field of research.Classification is an important stage in data mining since it helps people make better decisions in a variety of situations,including scientific endeavors,biomedical research,and industrial applications.The probabilistic neural network(PNN)is a commonly used and successful method for handling classification and pattern recognition issues.In this study,the authors proposed to combine the probabilistic neural network(PPN),which is one of the data mining techniques,with the vibrating particles system(VPS),which is one of the metaheuristic algorithms named“VPS-PNN”,to solve classi-fication problems more effectively.The data set is eleven common benchmark medical datasets from the machine-learning library,the suggested method was tested.The suggested VPS-PNN mechanism outperforms the PNN,biogeography-based optimization,enhanced-water cycle algorithm(E-WCA)and the firefly algorithm(FA)in terms of convergence speed and classification accuracy.展开更多
The paper is a part of an ongoing study, labelled as "Designing out wicked problems" - a design science research (DSR) study with the purpose of developing, implementing, and evaluating a methodology framework for...The paper is a part of an ongoing study, labelled as "Designing out wicked problems" - a design science research (DSR) study with the purpose of developing, implementing, and evaluating a methodology framework for designing multi-stakeholder business models. The objective of the current paper is to evaluate the business model design framework within a DSR framework. The research is conducted as three-year case study at three sites: The Danish police, with a key player in the Danish energy sector, and the municipality of the Danish capital, Copenhagen. The research method is action research, with a structure of planning-action-evaluation process conducted with the case owners - as well as design science methodology, where an artifact (the multi-stakeholder business model design concept) is created, evaluated and altered to improve its functionality. The finding of this study is that the maturity of the application domain - the type of problem the concept is trying to solve - as well as of the concept itself, is low. The conclusion is thus that the knowledge contribution of the study is of a unique invention character which will lay the foundation for further evaluation and research.展开更多
为揭示电动车辆路径问题领域的研究与发展现状,对CNKI和Web of Science数据库中电动车辆路径问题1994-2022年间的期刊文献进行知识挖掘与分析。基于文献计量学的量化分析与知识图谱的可视化,通过分析文献外部特征和共被引情况,梳理研究...为揭示电动车辆路径问题领域的研究与发展现状,对CNKI和Web of Science数据库中电动车辆路径问题1994-2022年间的期刊文献进行知识挖掘与分析。基于文献计量学的量化分析与知识图谱的可视化,通过分析文献外部特征和共被引情况,梳理研究热点及热点演进趋势,归纳研究主题,总结出电动车辆路径问题的知识域包括研究主题和应用场景,其中,研究主题由变体研究、充电调度、求解方法三部分构成;对电动车辆路径问题在复杂实际问题、高效求解算法方面的未来发展进行展望,这将为电动车辆路径问题研究的深入化与国际化提供一定的推动作用。展开更多
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ...There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.展开更多
Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such a...Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.展开更多
文摘This study investigated the effectiveness of spatial-visualization-based instruction on the mathematical problem-solving performance of 35 mathematics education students using one-group pretest-posttest quasi-experimental design. It also aimed to describe how spatial visualization is applied in solving mathematical problems. The findings of the study revealed that spatial-visualization-based instruction improved the mathematical problem-solving performance of students. The spatial-visualization ability can be applied in solving mathematical problems.
文摘This paper looks at student's view of the usefulness of a problem solving and programming module in the first year of a 3-year undergraduate program.The School of Science and Technology,University of Northampton,UK has been investigating,over the last seven years the teaching of problem solving.Including looking at whether a more visual approach has any benefits(the visual programming includes both 2-d and graphical user interfaces).Whilst the authors have discussed the subject problem solving and programming in the past [1] this paper considers the students perspective from research collected/collated by a student researcher under a new initiative within the University.All students interviewed either had completed the module within the two years of the survey or were completing the problem-solving module in their first year.
文摘Big data is a term that refers to a set of data that,due to its largeness or complexity,cannot be stored or processed with one of the usual tools or applications for data management,and it has become a prominent word in recent years for the massive development of technology.Almost immediately thereafter,the term“big data mining”emerged,i.e.,mining from big data even as an emerging and interconnected field of research.Classification is an important stage in data mining since it helps people make better decisions in a variety of situations,including scientific endeavors,biomedical research,and industrial applications.The probabilistic neural network(PNN)is a commonly used and successful method for handling classification and pattern recognition issues.In this study,the authors proposed to combine the probabilistic neural network(PPN),which is one of the data mining techniques,with the vibrating particles system(VPS),which is one of the metaheuristic algorithms named“VPS-PNN”,to solve classi-fication problems more effectively.The data set is eleven common benchmark medical datasets from the machine-learning library,the suggested method was tested.The suggested VPS-PNN mechanism outperforms the PNN,biogeography-based optimization,enhanced-water cycle algorithm(E-WCA)and the firefly algorithm(FA)in terms of convergence speed and classification accuracy.
文摘The paper is a part of an ongoing study, labelled as "Designing out wicked problems" - a design science research (DSR) study with the purpose of developing, implementing, and evaluating a methodology framework for designing multi-stakeholder business models. The objective of the current paper is to evaluate the business model design framework within a DSR framework. The research is conducted as three-year case study at three sites: The Danish police, with a key player in the Danish energy sector, and the municipality of the Danish capital, Copenhagen. The research method is action research, with a structure of planning-action-evaluation process conducted with the case owners - as well as design science methodology, where an artifact (the multi-stakeholder business model design concept) is created, evaluated and altered to improve its functionality. The finding of this study is that the maturity of the application domain - the type of problem the concept is trying to solve - as well as of the concept itself, is low. The conclusion is thus that the knowledge contribution of the study is of a unique invention character which will lay the foundation for further evaluation and research.
文摘为揭示电动车辆路径问题领域的研究与发展现状,对CNKI和Web of Science数据库中电动车辆路径问题1994-2022年间的期刊文献进行知识挖掘与分析。基于文献计量学的量化分析与知识图谱的可视化,通过分析文献外部特征和共被引情况,梳理研究热点及热点演进趋势,归纳研究主题,总结出电动车辆路径问题的知识域包括研究主题和应用场景,其中,研究主题由变体研究、充电调度、求解方法三部分构成;对电动车辆路径问题在复杂实际问题、高效求解算法方面的未来发展进行展望,这将为电动车辆路径问题研究的深入化与国际化提供一定的推动作用。
基金supported by the NIBIB and the NEI of the National Institutes of Health(R01EB018117)。
文摘There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.
文摘Wireless visual sensor network (VSN) can be said to be a special class of wireless sensor network (WSN) with smart-cameras. Due to its visual sensing capability, it has become an effective tool for applications such as large area surveillance, environmental monitoring and objects tracking. Different from a conventional WSN, VSN typically includes relatively expensive camera sensors, enhanced flash memory and a powerful CPU. While energy consumption is dominated primarily by data transmission and reception, VSN consumes extra power onimage sensing, processing and storing operations. The well-known energy-hole problem of WSNs has a drastic impact on the lifetime of VSN, because of the additional energy consumption of a VSN. Most prior research on VSN energy issues are primarily focusedon a single device or a given specific scenario. In this paper, we propose a novel optimal two-tier deployment strategy for a large scale VSN. Our two-tier VSN architecture includes tier-1 sensing network with visual sensor nodes (VNs) and tier-2 network having only relay nodes (RNs). While sensing network mainly performs image data collection, relay network only for wards image data packets to the central sink node. We use uniform random distribution of VNs to minimize the cost of VSN and RNs are deployed following two dimensional Gaussian distribution so as to avoid energy-hole problem. Algorithms are also introduced that optimizes deployment parameters and are shown to enhance the lifetime of the VSN in a cost effective manner.