AIM:To evaluate the visual outcomes of standard amblyopic treatment add-on training via perceptual learning in refractive amblyopic children and to identify the risk factors for treatment failure.METHODS:Retrospective...AIM:To evaluate the visual outcomes of standard amblyopic treatment add-on training via perceptual learning in refractive amblyopic children and to identify the risk factors for treatment failure.METHODS:Retrospective charts were reviewed in children with refractive amblyopia who received standard treatment and add-on Cambridge Visual Stimulator(CAM)training.The add-on CAM group that was enrolled had worn full-corrected glasses for at least 2mo before training.A control group received only the standard treatment.Treatment success was defined as best-corrected visual acuity(BCVA)≥20/25.The age,sex,initial BCVA,refractive errors,sessions and duration of training,and final BCVA were recorded.RESULTS:A total of 209 children(129 children in add-on CAM group and 80 children in control group)were enrolled.Seventy-six percent of unilateral and 87%of bilateral amblyopic children achieved treatment success.In children with unilateral or bilateral moderate amblyopia,the duration to reach BCVA≥20/25 was significantly shorter in add-on CAM group than in control group.Poor initial BCVA(P<0.001)and high astigmatism(P=0.007)were risk factors for treatment failure after add-on CAM training.Age,sex,and types of refractive error were not associated with treatment success.CONCLUSION:Add-on CAM training is an effective strategy for visual improvement and can shorten the treatment course when the effect of standard treatment is limited in amblyopic children.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
The human visual sensitivity to the flickering light has been under investigation for decades.The finding of research in this area can contribute to the understanding of human visual system mechanism and visual disord...The human visual sensitivity to the flickering light has been under investigation for decades.The finding of research in this area can contribute to the understanding of human visual system mechanism and visual disorders,and establishing diagnosis and treatment of diseases.The aim of this study is to investigate the ffects of the flickering light to the visual cortex by monitoring the hemodynamic responses of the brain with the functional near infrared spectrosoopy(ENIRS)method.Since the acquired fNIRS signals are afected by physiological factors and measurement artifacts,constrained independent component analysis(eICA)was applied to extract the actual fNIRS responses from the obtained data.The experimental results revealed significant changes(p<0.0001)of the hemodynamic responses of the visual cortex.from the baseline when the flickering stimulation was activated.With the uses of cICA,the contrast to noise ratio(CNR),reflecting the contrast of hemodynamic concentration between rest and task,became larger.This indicated the improvement of the NIRS signals when the noise was eliminated.In subsequent studies,statistical analysis was used to infer the correlation between the NIRS signals and the visual stimulus.We found that there was a slight decrease of the oxygenated hemoglobin con-centration(about 5.69%)over four frequencies when the modulation increased.However,the variations of oxy and deoxy-hemoglobin were not statistically significant.展开更多
Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pre...Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pressure(IOP),the mechanisms behind the disease have not been fully elucidated.To date,IOP lowering remains the gold standard;however,glaucoma patients may still lose vision regardless of effective IOP management.Therefore,the exclusive IOP control apparently is not enough to stop the disease progression,and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance.Besides pharmacological treatments,environmental conditions have been shown to prevent neurodegeneration in the central nervous system.In this review,we discuss current concepts on key pathogenic mechanisms involved in glaucoma,the effect of enriched environment on these mechanisms in different experimental models,as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage.Finally,we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease,preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.展开更多
Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic...Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic brain injury [1]. The boundary between awareness and unawareness remains elusive, making it difficult to correctly distinguish MCS from VS patients. It is possible to employ noninvasive neuroimaging techniques, such as functional MRI (fMRI) [2] to assess residual cognitive processing as well as consciousness. However, the causal link between neural activity in specific brain areas and specific behavioral tasks is hard to dissect using fMRI [3]. Therefore, detecting residual cognitive function and consciousness in patients surviving severe brain injury remains extremely challenging.展开更多
This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour...This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour during flight simulator manoeuvres.Multimodal physiological signals were collected from 12 experienced pilots with international aviation qualifications under the wide-angle and impressive vision simulation.The data collection spanned two flight strike missions,each with three mission intensities,resulting in a data set of EEG,ECG,and eye movement signals from six subtasks.The multimodal data were analysed using signal processing methods.The results indicated that,when the flight missions were performed,the pilots’physiological characteristics exhibited rhythmic changes in the power spectrum ofθwaves in the EEG,r-MSSD in the ECG,and average gaze duration.Furthermore,the pilots’physiological signals were more sensitive during the target mission than during the empty target mission.The results also showed correlations between different physiological characteristics.We showed that specific multimodal features are useful for advancing neuroscience research into pilots’cognitive behaviour and processes related to brain activity,psychological rhythms,and eye movement.展开更多
基金Supported by the Kaohsiung Chang Gung Memorial Hospital and University College of Medicine(No.CMRPG8L1231,No.CMRPG8L1232,Kaohsiung,Taiwan).
文摘AIM:To evaluate the visual outcomes of standard amblyopic treatment add-on training via perceptual learning in refractive amblyopic children and to identify the risk factors for treatment failure.METHODS:Retrospective charts were reviewed in children with refractive amblyopia who received standard treatment and add-on Cambridge Visual Stimulator(CAM)training.The add-on CAM group that was enrolled had worn full-corrected glasses for at least 2mo before training.A control group received only the standard treatment.Treatment success was defined as best-corrected visual acuity(BCVA)≥20/25.The age,sex,initial BCVA,refractive errors,sessions and duration of training,and final BCVA were recorded.RESULTS:A total of 209 children(129 children in add-on CAM group and 80 children in control group)were enrolled.Seventy-six percent of unilateral and 87%of bilateral amblyopic children achieved treatment success.In children with unilateral or bilateral moderate amblyopia,the duration to reach BCVA≥20/25 was significantly shorter in add-on CAM group than in control group.Poor initial BCVA(P<0.001)and high astigmatism(P=0.007)were risk factors for treatment failure after add-on CAM training.Age,sex,and types of refractive error were not associated with treatment success.CONCLUSION:Add-on CAM training is an effective strategy for visual improvement and can shorten the treatment course when the effect of standard treatment is limited in amblyopic children.
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
基金supported by Vietnam National University-Ho Chi Minh City research grant B2011-28-01.
文摘The human visual sensitivity to the flickering light has been under investigation for decades.The finding of research in this area can contribute to the understanding of human visual system mechanism and visual disorders,and establishing diagnosis and treatment of diseases.The aim of this study is to investigate the ffects of the flickering light to the visual cortex by monitoring the hemodynamic responses of the brain with the functional near infrared spectrosoopy(ENIRS)method.Since the acquired fNIRS signals are afected by physiological factors and measurement artifacts,constrained independent component analysis(eICA)was applied to extract the actual fNIRS responses from the obtained data.The experimental results revealed significant changes(p<0.0001)of the hemodynamic responses of the visual cortex.from the baseline when the flickering stimulation was activated.With the uses of cICA,the contrast to noise ratio(CNR),reflecting the contrast of hemodynamic concentration between rest and task,became larger.This indicated the improvement of the NIRS signals when the noise was eliminated.In subsequent studies,statistical analysis was used to infer the correlation between the NIRS signals and the visual stimulus.We found that there was a slight decrease of the oxygenated hemoglobin con-centration(about 5.69%)over four frequencies when the modulation increased.However,the variations of oxy and deoxy-hemoglobin were not statistically significant.
基金supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica,Nos.PICT 1563 and PICT 2731(to RER)The University of Buenos Aires,No.20020100100678(to RER)Consejo Nacional de Investigaciones Científicas y Técnicas,No.PIP 0707(to RER),Argentina。
文摘Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pressure(IOP),the mechanisms behind the disease have not been fully elucidated.To date,IOP lowering remains the gold standard;however,glaucoma patients may still lose vision regardless of effective IOP management.Therefore,the exclusive IOP control apparently is not enough to stop the disease progression,and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance.Besides pharmacological treatments,environmental conditions have been shown to prevent neurodegeneration in the central nervous system.In this review,we discuss current concepts on key pathogenic mechanisms involved in glaucoma,the effect of enriched environment on these mechanisms in different experimental models,as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage.Finally,we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease,preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
基金supported by the Guangdong Provincial Natural Science Foundation(2015A030313609)the Guangzhou Municipal Project for Science and Technology Foundation(201508020253)
文摘Dear Editor,Coma, the vegetative state (VS), and the minimally- conscious state (MCS), often collectively referred to as disorders of consciousness (DOCs), typically occur after severe traumatic or non-traumatic brain injury [1]. The boundary between awareness and unawareness remains elusive, making it difficult to correctly distinguish MCS from VS patients. It is possible to employ noninvasive neuroimaging techniques, such as functional MRI (fMRI) [2] to assess residual cognitive processing as well as consciousness. However, the causal link between neural activity in specific brain areas and specific behavioral tasks is hard to dissect using fMRI [3]. Therefore, detecting residual cognitive function and consciousness in patients surviving severe brain injury remains extremely challenging.
文摘This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour during flight simulator manoeuvres.Multimodal physiological signals were collected from 12 experienced pilots with international aviation qualifications under the wide-angle and impressive vision simulation.The data collection spanned two flight strike missions,each with three mission intensities,resulting in a data set of EEG,ECG,and eye movement signals from six subtasks.The multimodal data were analysed using signal processing methods.The results indicated that,when the flight missions were performed,the pilots’physiological characteristics exhibited rhythmic changes in the power spectrum ofθwaves in the EEG,r-MSSD in the ECG,and average gaze duration.Furthermore,the pilots’physiological signals were more sensitive during the target mission than during the empty target mission.The results also showed correlations between different physiological characteristics.We showed that specific multimodal features are useful for advancing neuroscience research into pilots’cognitive behaviour and processes related to brain activity,psychological rhythms,and eye movement.