In order to simplify the three-dimensional building group model, this paper proposes a clustering generalization method based on visual cognitive theory. The method uses road elements to roughly divide scenes, and the...In order to simplify the three-dimensional building group model, this paper proposes a clustering generalization method based on visual cognitive theory. The method uses road elements to roughly divide scenes, and then uses spatial cognitive elements such as direction, area, height and their topological constraints to classify them precisely, so as to make them conform to the urban morphological characteristics. Delaunay triangulation network and boundary tracking synthesis algorithm are used to merge and summarize the models, and the models are stored hierarchically. The proposed algorithm should be verified experimentally with a typical urban complex model. The experimental results show that the efficiency of the method used in this paper is at least 20% higher than that of previous one, and with the growth of test data, the higher efficiency is improved. The classification results conform to human cognitive habits, and the generalization levels of different models can be relatively unified by adaptive control of each threshold in the clustering generalization process.展开更多
文摘In order to simplify the three-dimensional building group model, this paper proposes a clustering generalization method based on visual cognitive theory. The method uses road elements to roughly divide scenes, and then uses spatial cognitive elements such as direction, area, height and their topological constraints to classify them precisely, so as to make them conform to the urban morphological characteristics. Delaunay triangulation network and boundary tracking synthesis algorithm are used to merge and summarize the models, and the models are stored hierarchically. The proposed algorithm should be verified experimentally with a typical urban complex model. The experimental results show that the efficiency of the method used in this paper is at least 20% higher than that of previous one, and with the growth of test data, the higher efficiency is improved. The classification results conform to human cognitive habits, and the generalization levels of different models can be relatively unified by adaptive control of each threshold in the clustering generalization process.