Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharm...Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.展开更多
土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,...土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。展开更多
基金Supported by the Talented Young Pressional Foundation of Jilin Province(No 2005123)
文摘Fructus cnidii (Chinese name shechuangzi) is the fruit produced by Cnidium monnieri (L.) Cusson (Umbelliferae). It is a perennial herb that is used to treat skin-related diseases and gynecopathyell. Recent pharmacological studies have revealed crude extracts or components isolated from fructus cnidii possess antiallergic, antipruritic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. Osthole and imperatorin are the major compounds present in shechuangzi. They are often used as standards for the evaluation of the quality of shechuangzi products.
文摘土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。