This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP...This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built,where thermal,structural,and multidisciplinary knowledge could be integrated for visualization.To implement visualized computing,the membership function of fuzzy decision-making was optimized using a genetic algorithm.Transient thermodynamic,structural statics,and flow field analyses were conducted,especially for glass fiber composite materials,which have the characteristics of high strength,corrosion resistance,temperature resistance,dimensional stability,and electrical insulation.An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP.Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution.A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT.Moreover,manufacturability was verified based on a thermal-solid coupled finite element analysis.The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.展开更多
Objective: This study visualizes and analyzes the current status, hotspots, and frontiers of cardiac rehabilitation for patients with Coronary Heart Disease (CHD) over the past decade (2012.01-2022.12), and explores t...Objective: This study visualizes and analyzes the current status, hotspots, and frontiers of cardiac rehabilitation for patients with Coronary Heart Disease (CHD) over the past decade (2012.01-2022.12), and explores the future development trend and research direction of the CR for CHD patients in China. Methods: Relevant literature was searched, screened and downloaded from the Web of Science (WOS) database, and bibliometric and visualization analyses were performed using CiteSpace VI software. Results: Through the search and screening of related literature, 2443 English articles were finally included. Among them, most of the Chinese publishers were mainly universities and had less connection with each other, while the foreign publishers were mainly universities and medical institutions in the United States and Europe, and had close connection with each other. The research content of Chinese scholars mainly focuses on the assessment of patients’ life and psychological status, as well as the assessment of cardiac function. Foreign research focuses on physical training assessment, disease perception, etc. Conclusion: Through visualizing relevant research with CiteSpace VI software in the form of a knowledge map, the research frontiers and trends in the field of cardiac rehabilitation for coronary heart disease patients in China and abroad can be discovered more intuitively. Compared with foreign research, the development of cardiac rehabilitation for coronary heart disease patients in China is relatively slow and insufficient, and institutions lack cooperation. In the future, China should accelerate the connection between regions in the field of cardiac rehabilitation and develop a cardiac rehabilitation model suitable for coronary heart disease patients in China with its own characteristics.展开更多
Cerebral or intracranial aneurysm is a leading cause of subarachnoid hemorrhage. It was initially treated with open surgical clipping but as rapid development of technology a less invasive endovascular coiling techniq...Cerebral or intracranial aneurysm is a leading cause of subarachnoid hemorrhage. It was initially treated with open surgical clipping but as rapid development of technology a less invasive endovascular coiling technique of aneurysm revolutionized the treatment. Due to tortuous anatomy of parent artery and complicated morphology and location of aneurysm there is ongoing challenge in the complete obliteration of aneurysms. To aid in the advances of treating aneurysm stent assisted endovascular coiling was introduced to give more scaffold support to parent artery and decrease events of coil protrusion from aneurysms. Many types and generation of stents were developed. One of the most recently introduced stent is low profile visualized intraluminal support (LVIS) stent. Due to its low profile nature it can be used in 0.017-inch inner diameter microcatheter and reach small and complex vessels providing high aneurysmal neck coverage which was not possible through other traditional stent. In addition, its braided design with tantalum strands and radiopaque markers make it more visible during stent placement and post procedure stent evaluation. Despite of many advantages of LVIS stent it is related to high rate of thromboembolic complications and technical complications. Aim of this review paper was to evaluate therapeutic safety, effectiveness and feasibility of LVIS stent in endovascular coil embolization of intracranial aneurysms.展开更多
How do individual neurons develop and how are they in- tegrated into neuronal circuitry? To answer this question is essential to understand how the nervous system develops and how it is maintained during the adult li...How do individual neurons develop and how are they in- tegrated into neuronal circuitry? To answer this question is essential to understand how the nervous system develops and how it is maintained during the adult life. A neural stem cell must go through several stages of maturation, including proliferation, migration, differentiation, and integration, to become fully embedded to an existing neuronal circuit. The knowledge on this topic so far has come mainly from cell culture studies. Studying the development of individual neurons within intact neuronal networks in vivo is inherently difficult. Most neurons are generated form neural stem cells during embryonic and early postnatal development.展开更多
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt...In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.展开更多
To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to und...To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.展开更多
A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to in...A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and their distribution, and controlling factors during the gas charging process in low-permeability(tight) sandstone reservoir. By describing features of gas-water flow and distribution and their variations in the micro-nano pore system, it is found that the gas charging in the low permeability(tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores;pore-throats greater than 20 μm in radius make up the major pathway for gas charging. With the increase of charging pressure, movable water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pore-throats of 20-50 μm in radius and pore-throats less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in pore-throat radius, throat length and coordination number of the pathway, which is the main increase stage of gas permeability and gas saturation. Among which, pore-throats 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keep stable in pore-throat radius, throat length, and coordination number, and irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase is in the form of dispersed thin film, and the gas saturation and gas permeability tend stable. Connected pore-throats less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability(tight) sandstone gas charging process and gas-water distribution features.展开更多
Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a co...Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.展开更多
Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil ...Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.展开更多
With the social development, we are stepping into an information technology world. In such a world, our life is getting more and more diversified and rich because of e-business. E-business not only provides us conveni...With the social development, we are stepping into an information technology world. In such a world, our life is getting more and more diversified and rich because of e-business. E-business not only provides us convenience but also large amounts of business data. However, how shall we better store, manage and use these business data has become a major field being studied by e-business. With the rapid growth of data volume, the relational database system cannot meet the requirements of the current status. In this paper, focusing on the visualized analysis model of Hadoop business data, it analyzed the business data in terms of the visualized platform, database and analysis model etc. Depending on the analysis, offline-data analysis and data visualization for Hive database will be greatly improved, so that references and suggestions can be provided for the visualized analysis model of Hadoop business data.展开更多
Simulators play an important role in training surgery residents to perform laparoscopy surgery. Some of these simulators have the capability to track tool motion to assess performance. However, most have not utilized ...Simulators play an important role in training surgery residents to perform laparoscopy surgery. Some of these simulators have the capability to track tool motion to assess performance. However, most have not utilized the data to analyze trainee performance in a meaningful way. The alpha shape method can be used to construct a geometric surface based on motion data to enable visualization of the performance, while the surface derivative (surface/time to completion)—efficiency—can be used as a metric to evaluate complex surgical performance. The utility of the alpha shape method was demonstrated in a pick-and-place task, where the motion path of laparoscopic graspers was recorded by a position sensor, miniBIRD 500?. An alpha shape method was used to measure the surface area of the 3D points in space occupied by the tool tips during task performance. Results show that the surface derivative measure alone may be able to model the speed-accuracy tradeoff function, thereby simplifying the analysis and evaluation of complex motion in surgical performance.展开更多
The 2020 TKK Science Award in I Life Sciences went to CAS member SHI Yigong,a distinguished structural biologist,for his achievements in:elucidating the yeast and human splicing cycle in atomic detail,which allows us ...The 2020 TKK Science Award in I Life Sciences went to CAS member SHI Yigong,a distinguished structural biologist,for his achievements in:elucidating the yeast and human splicing cycle in atomic detail,which allows us to visually appreciate the dynamic process of the supermolecular machinery of spliceosome performing molecular surgery on the chain of a pre-message RNA(pre-mRNA)to give rise to a mature mRNA.展开更多
Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated suc...Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.展开更多
Existing soundscape prediction model application conditions and calculation processes are very complex,and difficult to combine with design processes.Therefore,in this study,a visual soundscape prediction model is con...Existing soundscape prediction model application conditions and calculation processes are very complex,and difficult to combine with design processes.Therefore,in this study,a visual soundscape prediction model is constructed for sound pressure level(SPL)prediction,sound source prediction,and soundscape evaluation prediction by inputting the elements of urban design under the meshing method(grid 50 m)into a machine learning Gaussian mixture model(GMM).Taking three typical urban parks as examples,the soundwalk method is used to collect subjective perception information on-site to verify prediction accuracy.The results show that by applying geographic information data,including the minimum distance values from predicted points to roads,entrances and exits,and internal nodes,the SPL can be predicted.When the accuracy rate is stable within a 3 dBA error range,the prediction accuracy rate is 67.7%.The visual perception information added is used to quickly predict the sound source type,and the output is the visualized distribution of the natural,human,and mechanical sound perception with a 77.4%accuracy rate.Finally,combining geographic,visual and sound data to predict soundscape evaluation,the model's output are good,medium,and poor categories for each descriptor of the soundscape evaluation,and the prediction results are visualized in three colours with a 74.2%accuracy rate.The convenient soundscape prediction model proposed in this paper can be applied to design practice.By adjusting park design elements,the distribution results can be compared,and an optimal design scheme from the soundscape perspective can be obtained.Combined with the model output,this study compares the model simulation results after adjusting the design elements and the original,and proposes targeted optimisation strategies for urban park soundscape.展开更多
基金the National Natural Science Foundation of China,Nos.51935009 and 51821093National key research and development project of China,No.2022YFB3303303+2 种基金Zhejiang University president special fund financed by Zhejiang province,No.2021XZZX008Zhejiang provincial key research and development project of China,Nos.2023C01060,LZY22E060002 and LZ22E050008The Ng Teng Fong Charitable Foundation in the form of ZJU-SUTD IDEA Grant,No.188170-11102.
文摘This study presents a robustness optimization method for rapid prototyping(RP)of functional artifacts based on visualized computing digital twins(VCDT).A generalized multiobjective robustness optimization model for RP of scheme design prototype was first built,where thermal,structural,and multidisciplinary knowledge could be integrated for visualization.To implement visualized computing,the membership function of fuzzy decision-making was optimized using a genetic algorithm.Transient thermodynamic,structural statics,and flow field analyses were conducted,especially for glass fiber composite materials,which have the characteristics of high strength,corrosion resistance,temperature resistance,dimensional stability,and electrical insulation.An electrothermal experiment was performed by measuring the temperature and changes in temperature during RP.Infrared thermographs were obtained using thermal field measurements to determine the temperature distribution.A numerical analysis of a lightweight ribbed ergonomic artifact is presented to illustrate the VCDT.Moreover,manufacturability was verified based on a thermal-solid coupled finite element analysis.The physical experiment and practice proved that the proposed VCDT provided a robust design paradigm for a layered RP between the steady balance of electrothermal regulation and manufacturing efficacy under hybrid uncertainties.
文摘Objective: This study visualizes and analyzes the current status, hotspots, and frontiers of cardiac rehabilitation for patients with Coronary Heart Disease (CHD) over the past decade (2012.01-2022.12), and explores the future development trend and research direction of the CR for CHD patients in China. Methods: Relevant literature was searched, screened and downloaded from the Web of Science (WOS) database, and bibliometric and visualization analyses were performed using CiteSpace VI software. Results: Through the search and screening of related literature, 2443 English articles were finally included. Among them, most of the Chinese publishers were mainly universities and had less connection with each other, while the foreign publishers were mainly universities and medical institutions in the United States and Europe, and had close connection with each other. The research content of Chinese scholars mainly focuses on the assessment of patients’ life and psychological status, as well as the assessment of cardiac function. Foreign research focuses on physical training assessment, disease perception, etc. Conclusion: Through visualizing relevant research with CiteSpace VI software in the form of a knowledge map, the research frontiers and trends in the field of cardiac rehabilitation for coronary heart disease patients in China and abroad can be discovered more intuitively. Compared with foreign research, the development of cardiac rehabilitation for coronary heart disease patients in China is relatively slow and insufficient, and institutions lack cooperation. In the future, China should accelerate the connection between regions in the field of cardiac rehabilitation and develop a cardiac rehabilitation model suitable for coronary heart disease patients in China with its own characteristics.
文摘Cerebral or intracranial aneurysm is a leading cause of subarachnoid hemorrhage. It was initially treated with open surgical clipping but as rapid development of technology a less invasive endovascular coiling technique of aneurysm revolutionized the treatment. Due to tortuous anatomy of parent artery and complicated morphology and location of aneurysm there is ongoing challenge in the complete obliteration of aneurysms. To aid in the advances of treating aneurysm stent assisted endovascular coiling was introduced to give more scaffold support to parent artery and decrease events of coil protrusion from aneurysms. Many types and generation of stents were developed. One of the most recently introduced stent is low profile visualized intraluminal support (LVIS) stent. Due to its low profile nature it can be used in 0.017-inch inner diameter microcatheter and reach small and complex vessels providing high aneurysmal neck coverage which was not possible through other traditional stent. In addition, its braided design with tantalum strands and radiopaque markers make it more visible during stent placement and post procedure stent evaluation. Despite of many advantages of LVIS stent it is related to high rate of thromboembolic complications and technical complications. Aim of this review paper was to evaluate therapeutic safety, effectiveness and feasibility of LVIS stent in endovascular coil embolization of intracranial aneurysms.
基金supported by DFG Schwerpunkt program 1392(project MA 4113/2-2)cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain(project B1-9)+1 种基金the German Ministry of Research and Education(BMBFproject 1364480)
文摘How do individual neurons develop and how are they in- tegrated into neuronal circuitry? To answer this question is essential to understand how the nervous system develops and how it is maintained during the adult life. A neural stem cell must go through several stages of maturation, including proliferation, migration, differentiation, and integration, to become fully embedded to an existing neuronal circuit. The knowledge on this topic so far has come mainly from cell culture studies. Studying the development of individual neurons within intact neuronal networks in vivo is inherently difficult. Most neurons are generated form neural stem cells during embryonic and early postnatal development.
基金Project supported by the National Basic Research Program of China (Grant No. 2009 CB724100)the National Natural Science Foundation of China (Grant No. 11172326)
文摘In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions.
文摘To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.
基金Supported by the National Natural Science Foundation of China (41330319 and 42072174)Foundation of China University of Petroleum Beijing (2462020XKBH016)Fellowship of China Postdoctoral Science Foundation (2020M680030)。
文摘A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and their distribution, and controlling factors during the gas charging process in low-permeability(tight) sandstone reservoir. By describing features of gas-water flow and distribution and their variations in the micro-nano pore system, it is found that the gas charging in the low permeability(tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores;pore-throats greater than 20 μm in radius make up the major pathway for gas charging. With the increase of charging pressure, movable water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pore-throats of 20-50 μm in radius and pore-throats less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in pore-throat radius, throat length and coordination number of the pathway, which is the main increase stage of gas permeability and gas saturation. Among which, pore-throats 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keep stable in pore-throat radius, throat length, and coordination number, and irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase is in the form of dispersed thin film, and the gas saturation and gas permeability tend stable. Connected pore-throats less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability(tight) sandstone gas charging process and gas-water distribution features.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(6133301021276078)+3 种基金the National Science Fund for Outstanding Young Scholars(61222303)the Fundamental Research Funds for the Central Universities,Shanghai Rising-Star Program(13QH1401200)the Program for New Century Excellent Talents in University(NCET-10-0885)Shanghai R&D Platform Construction Program(13DZ2295300)
文摘Purified terephthalic acid(PTA) is an important chemical raw material. P-xylene(PX) is transformed to terephthalic acid(TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to improve the product quality, as well as to visualize the fault type clearly, a fault diagnosis method based on selforganizing map(SOM) and high dimensional feature extraction method, local tangent space alignment(LTSA),is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously,and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process indicate that the LTSA–SOM can well detect and visualize the fault type.
基金supported by the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(52104061)+2 种基金the project funded by China Postdoctoral Science Foundation(2020M682264)the Shandong Provincial Natural Science Foundation(ZR2021QE075)the Fundamental Research Funds for the Central Universities(20CX06090A)。
文摘Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.
文摘With the social development, we are stepping into an information technology world. In such a world, our life is getting more and more diversified and rich because of e-business. E-business not only provides us convenience but also large amounts of business data. However, how shall we better store, manage and use these business data has become a major field being studied by e-business. With the rapid growth of data volume, the relational database system cannot meet the requirements of the current status. In this paper, focusing on the visualized analysis model of Hadoop business data, it analyzed the business data in terms of the visualized platform, database and analysis model etc. Depending on the analysis, offline-data analysis and data visualization for Hive database will be greatly improved, so that references and suggestions can be provided for the visualized analysis model of Hadoop business data.
文摘Simulators play an important role in training surgery residents to perform laparoscopy surgery. Some of these simulators have the capability to track tool motion to assess performance. However, most have not utilized the data to analyze trainee performance in a meaningful way. The alpha shape method can be used to construct a geometric surface based on motion data to enable visualization of the performance, while the surface derivative (surface/time to completion)—efficiency—can be used as a metric to evaluate complex surgical performance. The utility of the alpha shape method was demonstrated in a pick-and-place task, where the motion path of laparoscopic graspers was recorded by a position sensor, miniBIRD 500?. An alpha shape method was used to measure the surface area of the 3D points in space occupied by the tool tips during task performance. Results show that the surface derivative measure alone may be able to model the speed-accuracy tradeoff function, thereby simplifying the analysis and evaluation of complex motion in surgical performance.
文摘The 2020 TKK Science Award in I Life Sciences went to CAS member SHI Yigong,a distinguished structural biologist,for his achievements in:elucidating the yeast and human splicing cycle in atomic detail,which allows us to visually appreciate the dynamic process of the supermolecular machinery of spliceosome performing molecular surgery on the chain of a pre-message RNA(pre-mRNA)to give rise to a mature mRNA.
基金supported by the National Natural Science Foundation of China(grant nos.NSFC22274044 and 21877031)the National Key Research and Development Program of China(grant no.2020YFA0210802)the Science and Technology Innovation Program of Hunan Province(grant no.2018RS3043).
文摘Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.
基金supported by the National Natural Science Foundation of China(NSFC)(No.52178070,No.51878210,No.51678180,and No.51608147)the Open Projects Fund of Key Laboratory of Ecology and Energy-saving Study of Dense Habitat(Tongji University),Ministry of Education(No.2020030103)+1 种基金the Ministry of Science and Technology of China(No.G2021179030L)the Natural Science Foundation of Heilongjiang Province(YQ2019E022).
文摘Existing soundscape prediction model application conditions and calculation processes are very complex,and difficult to combine with design processes.Therefore,in this study,a visual soundscape prediction model is constructed for sound pressure level(SPL)prediction,sound source prediction,and soundscape evaluation prediction by inputting the elements of urban design under the meshing method(grid 50 m)into a machine learning Gaussian mixture model(GMM).Taking three typical urban parks as examples,the soundwalk method is used to collect subjective perception information on-site to verify prediction accuracy.The results show that by applying geographic information data,including the minimum distance values from predicted points to roads,entrances and exits,and internal nodes,the SPL can be predicted.When the accuracy rate is stable within a 3 dBA error range,the prediction accuracy rate is 67.7%.The visual perception information added is used to quickly predict the sound source type,and the output is the visualized distribution of the natural,human,and mechanical sound perception with a 77.4%accuracy rate.Finally,combining geographic,visual and sound data to predict soundscape evaluation,the model's output are good,medium,and poor categories for each descriptor of the soundscape evaluation,and the prediction results are visualized in three colours with a 74.2%accuracy rate.The convenient soundscape prediction model proposed in this paper can be applied to design practice.By adjusting park design elements,the distribution results can be compared,and an optimal design scheme from the soundscape perspective can be obtained.Combined with the model output,this study compares the model simulation results after adjusting the design elements and the original,and proposes targeted optimisation strategies for urban park soundscape.