Background:Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues.Vitamin E is an antioxidant with potential anti-fibroblastic effect.The aim of this study was to establish a...Background:Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues.Vitamin E is an antioxidant with potential anti-fibroblastic effect.The aim of this study was to establish an arthrofibrosis rat model after joint replacement and assess the effects of vitamin E supplementation on joint fibrosis.Methods:We simulated knee replacement in 16 male Sprague–Dawley rats.We immobilized the surgical leg with a suture in full flexion.The control groups were killed at 2 and 12 weeks(n=5 per group),and the test group was supplemented daily with vitamin E(0.2 mg/mL)in their drinking water for 12 weeks(n=6).We performed histological staining to investigate the presence and severity of arthrofibrosis.Immunofluorescent staining andα2-macroglobulin(α2M)enzyme-linked immunosorbent assay(ELISA)were used to assess local and systemic inflammation.Static weight bearing(total internal reflection)and range of motion(ROM)were collected for functional assessment.Results:The ROM and weight-bearing symmetry decreased after the procedure and recovered slowly with still significant deficit at the end of the study for both groups.Histological analysis confirmed fibrosis in both lateral and posterior periarticular tissue.Vitamin E supplementation showed a moderate anti-inflammatory effect on the local and systemic levels.The vitamin E group exhibited significant improvement in ROM and weight-bearing symmetry at day 84 compared to the control group.Conclusions:This model is viable for simulating arthrofibrosis after joint replacement.Vitamin E may benefit postsurgical arthrofibrosis,and further studies are needed for dosing requirements.展开更多
We described a novel polymer-lipase conjugate for high-efficient esterification of vitamin E using vitamin E and succinic anhydride as the substrates in nonaqueous media.In this work,the monomer,N-isopropylacrylamide(...We described a novel polymer-lipase conjugate for high-efficient esterification of vitamin E using vitamin E and succinic anhydride as the substrates in nonaqueous media.In this work,the monomer,N-isopropylacrylamide(NIPAM),was grafted onto Candida rugosa lipase(CRL)to synthesize poly(NIPAM)(pNIPAM)-CRL conjugate by atom transfer radical polymerization via the initiator coupled on the surface of CRL.The result showed that the catalytic efficiencies of pNIPAM-CRL conjugates(19.5-30.3 L·s^(-1)·mmol^(-1))were at least 7 times higher than that of free CRL(2.36 L·s^(-1)·mmol^(-1))in DMSO.It was attributed to a significant increase in Kcat of the conjugates in nonaqueous media.The synthesis catalyzed by pNIPAM-CRL co njugates was influenced by the length and density of the grafted polymer,water content,solvent polarity and molar ratio of the substrates.In the optimal synthesis,the reaction time was shortened at least 7 times,and yields of vitamin E succinate by pNIPAM-g-CRL and free CRL were obtained to be 75.4%and 6.6%at 55℃after the reaction for 1.5 h.The result argued that conjugation with pNIPAM induced conformational change of the lid on CRL based on hydrophobic interaction,thus providing a higher possibility of catalysis-favorable conformation on CRL in nonaqueous media.Moreover,pNIPAM conjugation improved the thermal stability of CRL greatly,and the stability improved further with an increase of chain length of pNIPAM.At the optimal reaction conditions(55℃and 1.5 h),pNIPAM-g-CRL also exhibited good reusability in the enzymatic synthesis of vitamin E succinate and kept~70%of its catalytic activity after ten consecutive cycles.The research demonstrated that pNIPAM-g-CRL was a more competitive biocatalyst in the enzymatic synthesis of vitamin E succinate and exhibited good application potential under harsh industrial conditions.展开更多
[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the gr...[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the growth kinetics and the vitamin E accumulation in wheat embryo callus cells.With the aim of getting the highest accumulation of the secondary metabolite Vitamin E,the optimal combination of copper and zinc in medium was confirmed by testing.[Result] The results showed that the production of vitamin E in B5 medium reached the highest value with 2.0 mg/mL ZnSO4·7H2O and 0.1 mg/mL CuSO4·5H2O.The fitting degrees of kinetic models of vitamin E accumulation and cell growth were 97.53% and 95.60%,respectively,which indicated good nonlinear relationships.[Conclusion] Both copper and zinc could affect the accumulation of vitamin E in wheat germ callus,and Copper showed more prominent effect than Zn.Synergism existed in low copper and zinc concentration,and the inhibitive effect enhanced with the increase of the concentrations.展开更多
Pancreatic cancer is the leading cause of cancer mortality worldwide.Research investigating effective management strategies for pancreatic cancer is ongoing.Vitamin E,consisting of both tocopherol and tocotrienol,has ...Pancreatic cancer is the leading cause of cancer mortality worldwide.Research investigating effective management strategies for pancreatic cancer is ongoing.Vitamin E,consisting of both tocopherol and tocotrienol,has demonstrated debatable effects on pancreatic cancer cells.Therefore,this scoping review aims to summarize the effects of vitamin E on pancreatic cancer.In October 2022,a literature search was conducted using PubMed and Scopus since their inception.Original studies on the effects of vitamin E on pancreatic cancer,including cell cultures,animal models and human clinical trials,were considered for this review.The literature search found 75 articles on this topic,but only 24 articles met the inclusion criteria.The available evidence showed that vitamin E modulated proliferation,cell death,angiogenesis,metastasis and inflammation in pancreatic cancer cells.However,the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies.More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.展开更多
Aim: To investigate the effect of formaldehyde (FA) on testes and the protective effect of vitamin E (VE) against oxidative damage by FA in the testes of adult rats. Methods: Thirty rats were randomly divided in...Aim: To investigate the effect of formaldehyde (FA) on testes and the protective effect of vitamin E (VE) against oxidative damage by FA in the testes of adult rats. Methods: Thirty rats were randomly divided into three groups: (1) control; (2) FA treatment group (FAt); and (3) FAt + VE group. FAt and FAt + VE groups were exposed to FA by inhalation at a concentration of 10 mg/m^3 for 2 weeks. In addition, FAt + VE group were orally administered VE during the 2-week FA treatment. After the treatment, the histopathological and biochemical changes in testes, as well as the quantity and quality of sperm, were observed. Results: The testicular weight, the quantity and quality of sperm, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (GSH) were significantly decreased whereas the level of malondialdehyde (MDA) was significantly increased in testes of rats in FAt group compared with those in the control group. VE treatment restored these parameters in FAt + VE group. In addition, microscopy with hematoxylin-eosin (HE) staining showed that seminiferous tubules atrophied, seminiferous epithelial cells disintegrated and shed in rats in FAt group and VE treatment significantly improved the testicular structure in FAt + VE group. Conclusion: FA destroys the testicular structure and function in adult rats by inducing oxidative stress, and this damage could be partially reversed by VE.展开更多
Aim: To investigate the effect of vitamin E on the radioprotection of spermatogenesis and chromatin condensation of spermatozoa during passage through the epididymis in mice exposed to irradiation. Methods: Adult outb...Aim: To investigate the effect of vitamin E on the radioprotection of spermatogenesis and chromatin condensation of spermatozoa during passage through the epididymis in mice exposed to irradiation. Methods: Adult outbred male ICR mice were orally administered natural vitamin E (VE, D-α-tocopheryl acetate) at 400 IU/kg for 7 days before exposure to 1 Gy of γ-irradiation. The animals were sacrificed at day 1, 7, 14, 21, 28, 35 and 70 post-irradiation (IR) and the percentage of testicular germ cells and epididymal sperm chromatin condensation was analyzed using flow cytometry. Results: Serum D-α-tocopheryl acetate levels were 47.4 ± 3.2 μg/dL in the treated group, yet it could not be detected in the control group. The testicular weight of irradiated mice pretreated with VE+IR was significantly (P<0.05) higher than that of those without VE treatment (IR) at day 14 and 21 post-irradiation. The percentage of primary spermatocytes (4C) in the VE+IR group was comparable to the controls but significantly (P<0.05) higher than those in the IR group from day 7 to 35 post-irradiation. The percentage of round spermatids (1C) in the VE+IR group was also significantly (P<0.05) higher than those in the IR group at day 28 post-irradiation. The primary spermatocytes : spermatogonia ratio in the IR group was significantly (P<0.05) declined at day 7 to 35 post-irradiation when compared to the VE+IR and control groups. The round spermatid : spermatogonia ratio in the VE+IR group was significantly (P<0.05) higher than that of the IR group at day 14 and 28 post-irradiation. The chromatin condensation of epididymal spermatozoa measured by propidium iodide uptake was not affected by 1 Gy of γ-irradiation. Conclusion: The administration of VE prior to irradiation protects spermatogenic cells from radiation.展开更多
基金supported in part by the Ruth Jackson Orthopedic Society and the Harris Orthopedic Laboratoryapproved by the Institutional Care and Use Committee of Massachusetts General Hospital(2020N000081)。
文摘Background:Arthrofibrosis is a joint disorder characterized by excessive scar formation in the joint tissues.Vitamin E is an antioxidant with potential anti-fibroblastic effect.The aim of this study was to establish an arthrofibrosis rat model after joint replacement and assess the effects of vitamin E supplementation on joint fibrosis.Methods:We simulated knee replacement in 16 male Sprague–Dawley rats.We immobilized the surgical leg with a suture in full flexion.The control groups were killed at 2 and 12 weeks(n=5 per group),and the test group was supplemented daily with vitamin E(0.2 mg/mL)in their drinking water for 12 weeks(n=6).We performed histological staining to investigate the presence and severity of arthrofibrosis.Immunofluorescent staining andα2-macroglobulin(α2M)enzyme-linked immunosorbent assay(ELISA)were used to assess local and systemic inflammation.Static weight bearing(total internal reflection)and range of motion(ROM)were collected for functional assessment.Results:The ROM and weight-bearing symmetry decreased after the procedure and recovered slowly with still significant deficit at the end of the study for both groups.Histological analysis confirmed fibrosis in both lateral and posterior periarticular tissue.Vitamin E supplementation showed a moderate anti-inflammatory effect on the local and systemic levels.The vitamin E group exhibited significant improvement in ROM and weight-bearing symmetry at day 84 compared to the control group.Conclusions:This model is viable for simulating arthrofibrosis after joint replacement.Vitamin E may benefit postsurgical arthrofibrosis,and further studies are needed for dosing requirements.
基金financially supported by the National Key Research and Development Program of China (2021YFC2102801)National Natural Science Foundation of China (21878221)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (21621004)the Haihe Laboratory of Sustainable Chemical Transformations for financial support.
文摘We described a novel polymer-lipase conjugate for high-efficient esterification of vitamin E using vitamin E and succinic anhydride as the substrates in nonaqueous media.In this work,the monomer,N-isopropylacrylamide(NIPAM),was grafted onto Candida rugosa lipase(CRL)to synthesize poly(NIPAM)(pNIPAM)-CRL conjugate by atom transfer radical polymerization via the initiator coupled on the surface of CRL.The result showed that the catalytic efficiencies of pNIPAM-CRL conjugates(19.5-30.3 L·s^(-1)·mmol^(-1))were at least 7 times higher than that of free CRL(2.36 L·s^(-1)·mmol^(-1))in DMSO.It was attributed to a significant increase in Kcat of the conjugates in nonaqueous media.The synthesis catalyzed by pNIPAM-CRL co njugates was influenced by the length and density of the grafted polymer,water content,solvent polarity and molar ratio of the substrates.In the optimal synthesis,the reaction time was shortened at least 7 times,and yields of vitamin E succinate by pNIPAM-g-CRL and free CRL were obtained to be 75.4%and 6.6%at 55℃after the reaction for 1.5 h.The result argued that conjugation with pNIPAM induced conformational change of the lid on CRL based on hydrophobic interaction,thus providing a higher possibility of catalysis-favorable conformation on CRL in nonaqueous media.Moreover,pNIPAM conjugation improved the thermal stability of CRL greatly,and the stability improved further with an increase of chain length of pNIPAM.At the optimal reaction conditions(55℃and 1.5 h),pNIPAM-g-CRL also exhibited good reusability in the enzymatic synthesis of vitamin E succinate and kept~70%of its catalytic activity after ten consecutive cycles.The research demonstrated that pNIPAM-g-CRL was a more competitive biocatalyst in the enzymatic synthesis of vitamin E succinate and exhibited good application potential under harsh industrial conditions.
文摘[Objective] The aim was to study the effect of the content of copper and zinc on in medium the vitamin E accumulation in wheat embryo-dreived callus.[Method] The mathematical models were established to describe the growth kinetics and the vitamin E accumulation in wheat embryo callus cells.With the aim of getting the highest accumulation of the secondary metabolite Vitamin E,the optimal combination of copper and zinc in medium was confirmed by testing.[Result] The results showed that the production of vitamin E in B5 medium reached the highest value with 2.0 mg/mL ZnSO4·7H2O and 0.1 mg/mL CuSO4·5H2O.The fitting degrees of kinetic models of vitamin E accumulation and cell growth were 97.53% and 95.60%,respectively,which indicated good nonlinear relationships.[Conclusion] Both copper and zinc could affect the accumulation of vitamin E in wheat germ callus,and Copper showed more prominent effect than Zn.Synergism existed in low copper and zinc concentration,and the inhibitive effect enhanced with the increase of the concentrations.
文摘Pancreatic cancer is the leading cause of cancer mortality worldwide.Research investigating effective management strategies for pancreatic cancer is ongoing.Vitamin E,consisting of both tocopherol and tocotrienol,has demonstrated debatable effects on pancreatic cancer cells.Therefore,this scoping review aims to summarize the effects of vitamin E on pancreatic cancer.In October 2022,a literature search was conducted using PubMed and Scopus since their inception.Original studies on the effects of vitamin E on pancreatic cancer,including cell cultures,animal models and human clinical trials,were considered for this review.The literature search found 75 articles on this topic,but only 24 articles met the inclusion criteria.The available evidence showed that vitamin E modulated proliferation,cell death,angiogenesis,metastasis and inflammation in pancreatic cancer cells.However,the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies.More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
基金grants from the SciTechnical Development Project of Shaanxi Province, China (2005K15-G2) Traditional Chinese Project of Shaanxi Province, China (2005024) Natural Science Foundation of Xi' an Jiaotong University (573026).
文摘Aim: To investigate the effect of formaldehyde (FA) on testes and the protective effect of vitamin E (VE) against oxidative damage by FA in the testes of adult rats. Methods: Thirty rats were randomly divided into three groups: (1) control; (2) FA treatment group (FAt); and (3) FAt + VE group. FAt and FAt + VE groups were exposed to FA by inhalation at a concentration of 10 mg/m^3 for 2 weeks. In addition, FAt + VE group were orally administered VE during the 2-week FA treatment. After the treatment, the histopathological and biochemical changes in testes, as well as the quantity and quality of sperm, were observed. Results: The testicular weight, the quantity and quality of sperm, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (GSH) were significantly decreased whereas the level of malondialdehyde (MDA) was significantly increased in testes of rats in FAt group compared with those in the control group. VE treatment restored these parameters in FAt + VE group. In addition, microscopy with hematoxylin-eosin (HE) staining showed that seminiferous tubules atrophied, seminiferous epithelial cells disintegrated and shed in rats in FAt group and VE treatment significantly improved the testicular structure in FAt + VE group. Conclusion: FA destroys the testicular structure and function in adult rats by inducing oxidative stress, and this damage could be partially reversed by VE.
文摘Aim: To investigate the effect of vitamin E on the radioprotection of spermatogenesis and chromatin condensation of spermatozoa during passage through the epididymis in mice exposed to irradiation. Methods: Adult outbred male ICR mice were orally administered natural vitamin E (VE, D-α-tocopheryl acetate) at 400 IU/kg for 7 days before exposure to 1 Gy of γ-irradiation. The animals were sacrificed at day 1, 7, 14, 21, 28, 35 and 70 post-irradiation (IR) and the percentage of testicular germ cells and epididymal sperm chromatin condensation was analyzed using flow cytometry. Results: Serum D-α-tocopheryl acetate levels were 47.4 ± 3.2 μg/dL in the treated group, yet it could not be detected in the control group. The testicular weight of irradiated mice pretreated with VE+IR was significantly (P<0.05) higher than that of those without VE treatment (IR) at day 14 and 21 post-irradiation. The percentage of primary spermatocytes (4C) in the VE+IR group was comparable to the controls but significantly (P<0.05) higher than those in the IR group from day 7 to 35 post-irradiation. The percentage of round spermatids (1C) in the VE+IR group was also significantly (P<0.05) higher than those in the IR group at day 28 post-irradiation. The primary spermatocytes : spermatogonia ratio in the IR group was significantly (P<0.05) declined at day 7 to 35 post-irradiation when compared to the VE+IR and control groups. The round spermatid : spermatogonia ratio in the VE+IR group was significantly (P<0.05) higher than that of the IR group at day 14 and 28 post-irradiation. The chromatin condensation of epididymal spermatozoa measured by propidium iodide uptake was not affected by 1 Gy of γ-irradiation. Conclusion: The administration of VE prior to irradiation protects spermatogenic cells from radiation.