Aqueous zinc ion batteries(AZIBs) have received great attention because of their non-toxicity,high safety,low cost,high abundance,and high specific power.However,their specific capacity is still low compared with lith...Aqueous zinc ion batteries(AZIBs) have received great attention because of their non-toxicity,high safety,low cost,high abundance,and high specific power.However,their specific capacity is still low compared with lithium ion battery,and current academic research interesting has been focused on developing new cathode materials with high specific capacity.In this study,a Mn/V hybrid polymer framework is designed by a simple self-polymerization scheme.During subsequent calcination,ultrafine VN quantum dots and MnO nanoparticles are generated in situ and stably encapsulated inside N-doped carbon(NC) shells to obtain a novel hybrid cathode NC@VN/MnO for AZIBs.According to the density functional theory(DFT) calculation,the hybrids of MnO and VN can generate both interfacial effects and built-in electric fields that significantly accelerate ion and electron transport by tuning the intrinsic electronic structure,thus enhancing electrochemical performance.A synergistic strategy of composition and structural design allows the rechargeable AZIBs to achieve low-cost and excellent long-cycle performance based on a relay type collaboration at different cycling stages.Consequently,the NC@VN/MnO cathode has output a capacity of 108.3 mA h g^(-1)after 12,000 cycles at 10 A g^(-1).These results clearly and fully demonstrate the advantages of the hybrid cathode NC@VN/MnO.展开更多
采用反应磁控溅射制备了Ti Al N/VN纳米多层膜,并使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、纳米压痕仪和多功能摩擦磨损试验机对多层膜的微结构与力学和摩擦学性能进行了表征和分析。研究结果表明:不同调制...采用反应磁控溅射制备了Ti Al N/VN纳米多层膜,并使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、纳米压痕仪和多功能摩擦磨损试验机对多层膜的微结构与力学和摩擦学性能进行了表征和分析。研究结果表明:不同调制周期的Ti Al N/VN多层膜均呈典型的柱状晶生长结构,插入VN层并没有打断Ti Al N涂层柱状晶的生长。在一定调制周期下,Ti Al N/VN纳米多层膜中的Ti Al N和VN层之间能够形成共格生长结构,其硬度和弹性模量相比于Ti Al N单层膜均有显著提升,其中,Ti Al N(10 nm)/VN(10 nm)的硬度和弹性模量最大增量分别达到39.3%和40.9%。Ti Al N/VN纳米多层膜的强化主要与其共格界面生长结构有关。另外,Ti Al N单层膜的摩擦系数较高(~0.9),通过周期性地插入摩擦系数较低的VN层能够使得Ti Al N的摩擦系数大大降低,Ti Al N/VN纳米多层膜的摩擦系数最低为0.4。展开更多
基金supported by the National Natural Science Foundation of China,China (51772205, 52073212)。
文摘Aqueous zinc ion batteries(AZIBs) have received great attention because of their non-toxicity,high safety,low cost,high abundance,and high specific power.However,their specific capacity is still low compared with lithium ion battery,and current academic research interesting has been focused on developing new cathode materials with high specific capacity.In this study,a Mn/V hybrid polymer framework is designed by a simple self-polymerization scheme.During subsequent calcination,ultrafine VN quantum dots and MnO nanoparticles are generated in situ and stably encapsulated inside N-doped carbon(NC) shells to obtain a novel hybrid cathode NC@VN/MnO for AZIBs.According to the density functional theory(DFT) calculation,the hybrids of MnO and VN can generate both interfacial effects and built-in electric fields that significantly accelerate ion and electron transport by tuning the intrinsic electronic structure,thus enhancing electrochemical performance.A synergistic strategy of composition and structural design allows the rechargeable AZIBs to achieve low-cost and excellent long-cycle performance based on a relay type collaboration at different cycling stages.Consequently,the NC@VN/MnO cathode has output a capacity of 108.3 mA h g^(-1)after 12,000 cycles at 10 A g^(-1).These results clearly and fully demonstrate the advantages of the hybrid cathode NC@VN/MnO.
文摘采用反应磁控溅射制备了Ti Al N/VN纳米多层膜,并使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、纳米压痕仪和多功能摩擦磨损试验机对多层膜的微结构与力学和摩擦学性能进行了表征和分析。研究结果表明:不同调制周期的Ti Al N/VN多层膜均呈典型的柱状晶生长结构,插入VN层并没有打断Ti Al N涂层柱状晶的生长。在一定调制周期下,Ti Al N/VN纳米多层膜中的Ti Al N和VN层之间能够形成共格生长结构,其硬度和弹性模量相比于Ti Al N单层膜均有显著提升,其中,Ti Al N(10 nm)/VN(10 nm)的硬度和弹性模量最大增量分别达到39.3%和40.9%。Ti Al N/VN纳米多层膜的强化主要与其共格界面生长结构有关。另外,Ti Al N单层膜的摩擦系数较高(~0.9),通过周期性地插入摩擦系数较低的VN层能够使得Ti Al N的摩擦系数大大降低,Ti Al N/VN纳米多层膜的摩擦系数最低为0.4。