期刊文献+
共找到2,790篇文章
< 1 2 140 >
每页显示 20 50 100
INFLUENCE OF WHEEL STRUCTURAL PARAMETERS ON MACHINING ACCURACY OF ULTRA-PRECISION PLANE HONING 被引量:4
1
作者 Guo Yinbiao Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, ChinaHu Jianyu Zheng Xiaoguang Katsuo SyojiXiamen University Chongqing University Tohoku University, Japan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第4期344-347,共4页
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ... A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy. 展开更多
关键词 fine grit diamond wheel ultra-precision plane honing machining accuracy wheel wear
下载PDF
Systematic analysis of error sources during ultra-precision machining 被引量:1
2
作者 ZHENG De-zhi, LU Ze-sheng (Precision Engineering Research Institute, Harbin Institute of Technology, Harbin 150001, China) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期59-62,共4页
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg... During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation. 展开更多
关键词 ULTRA-precision machinE TOOLS ERROR SOURCES VIBRATION
下载PDF
Mesoplasticity Approach to Studies of the Cutting Mechanism in Ultra-precision Machining 被引量:2
3
作者 LEE WB Rongbin WANG Hao +2 位作者 TO Suet CHEUNG Chi Fai CHAN Chang Yuen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期219-228,共10页
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast... There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale. 展开更多
关键词 ultra-precision machining cutting mechanism mesoplasticity shear angle prediction size effect micro-cutting force variation high frequency tool-tip vibration
下载PDF
Research of Digital Manufacturing Technology Application on Ultra-precision Optical Workpiece Machining
4
作者 HE Daxing (School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期359-362,共4页
Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precis... Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces. 展开更多
关键词 DIGITAL MANUFACTURING ULTRA-precision machining technology OPTICAL application
下载PDF
RESEARCH ON TECHNOLOGY AND SYSTEM FOR ON-LINE MEASUREMENT OF SURFACE ROUGHNESS IN ULTRA=PRECISION MACHINING
5
作者 吕海宝 王跃科 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第3期20-25,共6页
RESEARCHONTECHNOLOGYANDSYSTEMFORON-LINEMEASUREMENTOFSURFACEROUGHNESSINULTRA-PRECISIONMACHININGLuHaibao;WangY... RESEARCHONTECHNOLOGYANDSYSTEMFORON-LINEMEASUREMENTOFSURFACEROUGHNESSINULTRA-PRECISIONMACHININGLuHaibao;WangYaoke;ZhuJigui;Zho... 展开更多
关键词 表面粗糙度测量 在线测量 超精密加工
下载PDF
345 GHz Band-Pass Filter Using Ultra-Precision Machining Technology
6
作者 Yu-Kun Li Yong Zhang Cai-Jie Ai 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第3期267-270,共4页
This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonan... This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonant cavities with a center frequency of 345 GHz and a 7% bandwidth.The final design fulfills the desired specifications and presents the minimum insertion loss of 1.55 d B and the return loss of less than 15 d B at 345 GHz.The stop-band rejection is50 d B off the center frequency about 30 GHz,which means it has a good performance of high stop-band suppression.Compared with the recent development of THz filters,this filter possesses the characteristic of simple structure and is easy to machining. 展开更多
关键词 Index Terms--Filter PROTOTYPE simple structure ultra-precision machining technology.
下载PDF
Fully Integrated Machine Control for Ultra Precision Machining
7
《Journal of Mechanics Engineering and Automation》 2013年第8期465-472,共8页
关键词 超精密车床 控制策略 全集成 加工机 可编程逻辑控制器 电流控制系统 现场可编程门阵列 超精密机床
下载PDF
Temperature Variable Optimization for Precision Machine Tool Thermal Error Compensation on Optimal Threshold 被引量:11
8
作者 ZHANG Ting YE Wenhua +2 位作者 LIANG Ruijun LOU Peihuang YANG Xiaolan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期158-165,共8页
Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to ... Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation. 展开更多
关键词 precision machine tool thermal error cluster analysis
下载PDF
Precision Design for Machine Tool Based on Error Prediction 被引量:5
9
作者 HUANG Qiang ZHANG Genbao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期151-157,共7页
Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision an... Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision and motion precision of machine tool, and the forming motion precision of workpiece surface. For the machine tool with complex forming motion, there is not accurate corresponding relationship between the existing criterion on precision design and the machining precision of workpiece. Therefore, a design scheme on machine tool precision based on error prediction is proposed, which is divided into two-stage digitization precision analysis crucially. The first stage aims at the technology system to complete the precision distribution and inspection from the workpiece to various component parts of technology system and achieve the total output precision of machine tool under the specified machining precision; the second stage aims at the machine tool system to complete the precision distribution and inspection from the output precision of machine tool to the machine tool components. This article serves YK3610 gear hobber as the example to describe the error model of two systems and basic application method, and the practical cutting precision of this machine tool achieves to 5-4-4 grade. The proposed method can provide reliable guidance to the precision design of machine tool with complex forming motion. 展开更多
关键词 complex forming motion machine tool precision design position-pose error error sensibility
下载PDF
Error compensation on precision machine tool servo control system based on digital concave filter 被引量:1
10
作者 王立松 苏宝库 +1 位作者 张晶 董申 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第4期389-393,共5页
It is concluded from the results of testing the frequency characteristics of the sub micron precision machine tool servo control system, that the existence of several oscillating modalities is the main factor that aff... It is concluded from the results of testing the frequency characteristics of the sub micron precision machine tool servo control system, that the existence of several oscillating modalities is the main factor that affects the performance of the control system. To compensate for this effect,several concave filters are utilized in the system to improve the control accuracy. The feasibility of compensating for several oscillating modalities with a single concave filter is also studied. By applying a modified Butterworth concave filter to the practical system, the maximum stable state output error remains under ±10 nm in the closed loop positioning system. 展开更多
关键词 precision machine tool concave filter oscillating modality
下载PDF
Active Vibration Isolation System for Sub microultra precision Turning Machine 被引量:1
11
作者 盖玉先 《High Technology Letters》 EI CAS 2000年第3期40-43,共4页
Now vibration isolation of ultra precision machine tool is usually achieved through air springs systems. As far as HCM I sub micro turning machine developed by HIT, an active vibration isolation system that consists o... Now vibration isolation of ultra precision machine tool is usually achieved through air springs systems. As far as HCM I sub micro turning machine developed by HIT, an active vibration isolation system that consists of air springs and electro magnetic actuators was presented. The primary function of air springs is to support the turning machine and to isolate the high frequency vibration. The electro magnetic actuators controlled by fuzzy neural networks isolate the low frequency vibration. The experiment indicates that active vibration isolation system isolates base vibration effectively in all the frequency range. So the vibration of the machine bed is controlled under 10 -6 g and the surface roughness is improved. 展开更多
关键词 ULTRA precision TURNING machinE Active vibration ISOLATION Fuzzy NEURAL networks
下载PDF
A Framework for Introducing Precision Agriculture Technologies in Egypt
12
作者 Mahmoud Abdelnabby Tarek Khalil 《Management Studies》 2023年第3期175-183,共9页
Precision Agriculture(PA)has been used in many countries and serving the agricultural sectors.The use of PA solutions intervened with many agricultural businesses and supported decision making using data analytics.Pre... Precision Agriculture(PA)has been used in many countries and serving the agricultural sectors.The use of PA solutions intervened with many agricultural businesses and supported decision making using data analytics.Precision Agriculture depends on weather,soil,plants,and water information that are essential for farming.Precision Agriculture depends on the use of several technologies such as image sensors,vision machines,drones,robots,machine learning,and artificial intelligence.The use of Precision Agriculture Technologies(PAT)depends on integration between devices,sensors,and systems to ensure the proper implementation of activities.This paper is generated from research on the applicability of PA in in Egypt that ended with a proposed framework for proper implementation of it.The conducted research depended on a survey,focus group discussions,and an online questionnaire that reached 271 respondents from 19 Egyptian governorates.The framework has been developed to enhance the role of an initiative leader to promote PAT through collaboration with other stakeholders in the agricultural sector.The proposed framework can be used by governmental,non-governmental entities,universities and private sector institutions and could be used at countries facing issues with land fragmentation,limited access to information,limited access to agricultural extension services,and increase in agricultural input’s prices. 展开更多
关键词 precision Agriculture precision agriculture technologies image sensors ROBOTS machine learning Internet of Things
下载PDF
Dynamic Accuracy Design Method of Ultra-precision Machine Tool 被引量:3
13
作者 Guo-Da Chen Ya-Zhou Sun +3 位作者 Fei-Hu Zhang Li-Hua Lu Wan-Qun Chen Nan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期167-175,共9页
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable... Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool. 展开更多
关键词 Dynamic accuracy design Ultra-precision machine tool Frequency domain Error allocation
下载PDF
From prediction to prevention:Machine learning revolutionizes hepatocellular carcinoma recurrence monitoring
14
作者 Mariana Michelle Ramírez-Mejía Nahum Méndez-Sánchez 《World Journal of Gastroenterology》 SCIE CAS 2024年第7期631-635,共5页
In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular ca... In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular carcinoma(HCC),which is characterized by high incidence and mortality rates,remains a major global health challenge primarily due to the critical issue of postoperative recurrence.Early recurrence,defined as recurrence that occurs within 2 years posttreatment,is linked to the hidden spread of the primary tumor and significantly impacts patient survival.Traditional predictive factors,including both patient-and treatment-related factors,have limited predictive ability with respect to HCC recurrence.The integration of machine learning algorithms is fueled by the exponential growth of computational power and has revolutionized HCC research.The study by Zhang et al demonstrated the use of a groundbreaking preoperative prediction model for early postoperative HCC recurrence.Challenges persist,including sample size constraints,issues with handling data,and the need for further validation and interpretability.This study emphasizes the need for collaborative efforts,multicenter studies and comparative analyses to validate and refine the model.Overcoming these challenges and exploring innovative approaches,such as multi-omics integration,will enhance personalized oncology care.This study marks a significant stride toward precise,efficient,and personalized oncology practices,thus offering hope for improved patient outcomes in the field of HCC treatment. 展开更多
关键词 Hepatocellular carcinoma Early recurrence machine learning XGBoost model Predictive precision medicine Clinical utility Personalized interventions
下载PDF
Error compensation for precision machine tools
15
作者 LU Zesheng(卢泽生) +3 位作者 ZHENG Dezhi(郑德志) DU Jinming(杜金名) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期282-287,共6页
As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are an... As one of the ways to improve the machining accuracy of machine tools, error compensation is reviewed from different view points, and the main barriers to further improvement of efficiency of error compensation are analyzed in detail and the vista of the error compensation in precision and ultra precision machines is discussed. 展开更多
关键词 ERROR COMPENSATION machining ACCURACY precision machinE tool
下载PDF
Active vibration control of spindle in ultra-precision turning machine
16
作者 WANG Jia-chun, LI Dan (Precision Engineering Research Institute, Harbin Institute of Technology, Harbin, 150001, China) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第S1期48-50,共3页
In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic be... In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic bearing spindle. Using aerostatic bearing itself as actuator, the vibration of spindle is controlled by adjusting admission pressure respectively and by changing pressure distribution in the bearing. The experiments and simulations prove that this method can minimize the vibration of spindle effectively. 展开更多
关键词 ULTRA-precision TURNING machine SPINDLE VIBRATION ROTARY precision active VIBRATION control
下载PDF
Design of Machine Learning Based Smart Irrigation System for Precision Agriculture
17
作者 Khalil Ibrahim Mohammad Abuzanouneh Fahd N.Al-Wesabi +6 位作者 Amani Abdulrahman Albraikan Mesfer Al Duhayyim M.Al-Shabi Anwer Mustafa Hilal Manar Ahmed Hamza Abu Sarwar Zamani K.Muthulakshmi 《Computers, Materials & Continua》 SCIE EI 2022年第7期109-124,共16页
Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform tradit... Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform traditional cultivation practices,like irrigation,to modern solutions of precision agriculture.To achieve effectivewater resource usage and automated irrigation in precision agriculture,recent technologies like machine learning(ML)can be employed.With this motivation,this paper design an IoT andML enabled smart irrigation system(IoTML-SIS)for precision agriculture.The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation.The proposed IoTML-SIS model involves different IoT based sensors for soil moisture,humidity,temperature sensor,and light.Besides,the sensed data are transmitted to the cloud server for processing and decision making.Moreover,artificial algae algorithm(AAA)with least squares-support vector machine(LS-SVM)model is employed for the classification process to determine the need for irrigation.Furthermore,the AAA is applied to optimally tune the parameters involved in the LS-SVM model,and thereby the classification efficiency is significantly increased.The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975. 展开更多
关键词 Automatic irrigation precision agriculture smart farming machine learning cloud computing decision making internet of things
下载PDF
Machine intelligence for precision oncology
18
作者 Nelson S Yee 《World Journal of Translational Medicine》 2021年第1期1-10,共10页
Despite various advances in cancer research,the incidence and mortality rates of malignant diseases have remained high.Accurate risk assessment,prevention,detection,and treatment of cancer tailored to the individual a... Despite various advances in cancer research,the incidence and mortality rates of malignant diseases have remained high.Accurate risk assessment,prevention,detection,and treatment of cancer tailored to the individual are major challenges in clinical oncology.Artificial intelligence(AI),a field of applied computer science,has shown promising potential of accelerating evolution of healthcare towards precision oncology.This article focuses on highlights of the application of data-driven machine learning(ML)and deep learning(DL)in translational research for cancer diagnosis,prognosis,treatment,and clinical outcomes.MLbased algorithms in radiological and histological images have been demonstrated to improve detection and diagnosis of cancer.DL-based prediction models in molecular or multi-omics datasets of cancer for biomarkers and targets enable drug discovery and treatment.ML approaches combining radiomics with genomics and other omics data enhance the power of AI in improving diagnosis,prognostication,and treatment of cancer.Ethical and regulatory issues involving patient confidentiality and data security impose certain limitations on practical implementation of ML in clinical oncology.However,the ultimate goal of application of AI in cancer research is to develop and implement multi-modal machine intelligence for improving clinical decision on individualized management of patients. 展开更多
关键词 Artificial intelligence Deep learning machine learning precision oncology Radiomics Radiogenomics
下载PDF
Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives 被引量:6
19
作者 Kai Cheng Zhi-Chao Niu +2 位作者 Robin C.Wang Richard Rakowski Richard Bateman 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1162-1176,共15页
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative des... Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultra- precision and micro manufacturing purposes. Implemen- tation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation tech- niques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algo- rithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in- process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) applica- tion exemplars on adaptive smart machining. 展开更多
关键词 Smart cutting tool Smart machining Fast toolservo (FFS) precision machining Micro manufacturing Smart tooling
下载PDF
Hardening Effect on Machined Surface for Precise Hard Cutting Process with Consideration of Tool Wear 被引量:3
20
作者 YUE Caixu LIU Xianli +3 位作者 MA Jing LIU Zhaojing LIU Fei YANG Yongheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1249-1256,共8页
During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transf... During hard cutting process there is severe thermodynamic coupling effect between cutting tool and workpiece, which causes quenching effect on finished surfaces under certain conditions. However, material phase transformation mechanism of heat treatment in cutting process is different from the one in traditional process, which leads to changes of the formation mechanism of damaged layer on machined workpiece surface. This paper researches on the generation mechanism of damaged layer on machined surface in the process of PCBN tool hard cutting hardened steel Cr12MoV. Rules of temperature change on machined surface and subsurface are got by means of finite element simulation. In phase transformation temperature experiments rapid transformation instrument is employed, and the effect of quenching under cutting conditions on generation of damaged layer is revealed. Based on that, the phase transformation points of temperature under cutting conditions are determined. By experiment, the effects of cutting speed and tool wear on white layer thickness in damaged layer are revealed. The temperature distribution law of third deformation zone is got by establishing the numerical prediction model, and thickness of white layer in damaged layer is predicted, taking the tool wear effect into consideration. The experimental results show that the model prediction is accurate, and the establishment of prediction model provides a reference for wise selection of parameters in precise hard cutting process. For the machining process with high demanding on surface integrity, the generation of damaged layer on machined surface can be controlled precisely by using the prediction model. 展开更多
关键词 precise hard cutting hardened mould steel hardening effect damaged layer on machined surface tool wear
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部