The Beka volcanic massifs are located northeast of Ngaoundere region, within the Adamawa plateau. It consists mainly of basanites, trachytes and phonolites. The petrographic study shows that all the basanite lavas hav...The Beka volcanic massifs are located northeast of Ngaoundere region, within the Adamawa plateau. It consists mainly of basanites, trachytes and phonolites. The petrographic study shows that all the basanite lavas have porphyritic microlitic textures with a more pronounced magmatic fluidity than the felsic lavas displaying trachytic textures. The lavas are composed of phenocrysts, microlites and microphenocrysts of olivine, clinopyroxene, plagioclase and iron-titanium oxides for the basanites and of greenish clinopyroxene, alkali feldspar, and titanomagnetite for the felsic lavas. Chemical microprobe analysis indicates that the olivine crystals are magnesian (Fo<sub>73-78</sub>). Clinopyroxene crystals have a composition of diopside (Wo<sub>47-</sub>) in the basaltic lavas and diopside near the hedenbergite pole in the trachytes phonoliths and titanomagnetite (TiO<sub>2</sub>: 21.13% - 22.36% and FeO: 68% - 68%). Chemical analyses on whole rocks show that all the lavas belong to the same series and the felsic lavas come from the differentiation of basanite lavas by fractional crystallization of the minerals therein. The basanites originate from a low rate of partial melting of an OIB-type mantle. Contamination and mixing processes are suspected. Lavas of similar composition are found in other volcanic centres of the Adamawa plateau and the continental and oceanic sectors of the Cameroon Volcanic Line, in particular the Kapsiki plateau, Mounts Cameroon and Bamenda.展开更多
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modi...Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.展开更多
文摘The Beka volcanic massifs are located northeast of Ngaoundere region, within the Adamawa plateau. It consists mainly of basanites, trachytes and phonolites. The petrographic study shows that all the basanite lavas have porphyritic microlitic textures with a more pronounced magmatic fluidity than the felsic lavas displaying trachytic textures. The lavas are composed of phenocrysts, microlites and microphenocrysts of olivine, clinopyroxene, plagioclase and iron-titanium oxides for the basanites and of greenish clinopyroxene, alkali feldspar, and titanomagnetite for the felsic lavas. Chemical microprobe analysis indicates that the olivine crystals are magnesian (Fo<sub>73-78</sub>). Clinopyroxene crystals have a composition of diopside (Wo<sub>47-</sub>) in the basaltic lavas and diopside near the hedenbergite pole in the trachytes phonoliths and titanomagnetite (TiO<sub>2</sub>: 21.13% - 22.36% and FeO: 68% - 68%). Chemical analyses on whole rocks show that all the lavas belong to the same series and the felsic lavas come from the differentiation of basanite lavas by fractional crystallization of the minerals therein. The basanites originate from a low rate of partial melting of an OIB-type mantle. Contamination and mixing processes are suspected. Lavas of similar composition are found in other volcanic centres of the Adamawa plateau and the continental and oceanic sectors of the Cameroon Volcanic Line, in particular the Kapsiki plateau, Mounts Cameroon and Bamenda.
基金funded by Australian Research Council grant FL180100134
文摘Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.