Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through fie...The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.展开更多
The Fossil Hill Formation of the type section composed chiefly of the sedimentary-volcaniclastic breccia and tuffites can be divided into two cycles of sedimentation. The thermal fluid was active in the coarse volcani...The Fossil Hill Formation of the type section composed chiefly of the sedimentary-volcaniclastic breccia and tuffites can be divided into two cycles of sedimentation. The thermal fluid was active in the coarse volcaniclastic deposits of the lower cy-cle, it led to the formation of laumontite,analcite,albite and regularly hybrid mineral of interlayered chlorite and montmorillonite .which are absent from the upper cycle, and to the transportation and concentration of some of trace elements between the coarser tuffites and the overlying fine tuffite bed at the upper part of this cycle. So-called 'rainprint' and 'mud crack' actually are non-sedimentary originally, they were formed respectively by sheddillg of the small zeolitized concretions on the bedding plane and tectonic pressed stress. The evidences indicate that the Fossil Hill Formation of the Fossil Hill section was deposited in an intermontane lake affected by both volcanic action andseasonal flail under the condition of worm and moist climate.展开更多
Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopi...Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopic composition analysis were combined to clarify the genesis of granular calcite in the lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin.It is found that the granular calcite is distributed with laminated characteristics in fine-grained sedimentary rocks in tuffite zones(or the transitional zone between tuffite and micritic dolomite).Granular calcite has obvious cathodoluminesence band,and it can be divided into three stages.Stage-Ⅰ calcite,with non-luminesence,high content of Sr element,inclusions containing Cos,and homogenization temperature higher than 170℃,was directly formed from the volcanic-hydrothermal deposition.Stage-Ⅱ calcite,with bright yellow luminescence,high contents of Fe,Mn and Mg,enrichment of light rare earth elements(LREEs),and high homogenization temperature,was formed by recrystallization of calcareous edges from exhalative hydrothermal deposition.Stage-IlI calcite,with dark orange luminescence band,high contents of Mg,P,V and other elements,no obvious fractionation among LREEs,and low homogenization temperature,was originated from diagenetic transformation during burial.The granular calcite appears regularly in the vertical direction and its formation temperature decreases from the center to the margin of particles,providing direct evidences for volcanic-hydrothermal events during the deposition of the Lucaogou Formation.The volcanic-hydrothermal event was conducive to the enrichment of organic matters in fine-grained sedimentary rocks of the Lucaogrou Formation,and positive to the development of high-quality source rocks.The volcanic-hydrothermal sediments might generate intergranular pores/fractures during the evolution,creating conditions for the self-generation and self-storage of shale oil.展开更多
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated poro...Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.展开更多
The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia...The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.展开更多
Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of...Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean ^206pb/^238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean ^206pb/^238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean ^206pb/^238U age of 113±4 Ma. The volcanic rocks have SIO2=60.24%-77.46%, MGO=0.36%-1.29% (Mg#=0.32-0.40) for the Naozhigou Formation, SIO2=51.60%-59.32%, MGO=3.70%-5.54% (Mg#=0.50-0.60) for the Ergulazi Formation, and SIO2=58.28%-76.32%, MGO=0.07%-1.20% (Mg#=0.14-0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial ^87Sr/^86Sr ratios (0.7053-0.7083) and low εNd(t) values (-8.38 to -2.43), and display an EMⅡ trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.展开更多
Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the ...Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at -1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent.展开更多
Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consist...Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the ^206Pb/^238U ages of zircons from andesite range within 105- 106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that ^206pb/^238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Snifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg^#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and lightrare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial ^87Sr/^86Sr ratios (0.7041-0.7057) and positive εNd(t) ValUes (0.39-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.展开更多
The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by...The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.展开更多
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in La...Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.展开更多
Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb ...Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.展开更多
The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has bee...The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.展开更多
Volcanic rocks in the study area, including dacite, trachyandesite and mugearite, belong to the intermediate-acid, high-K calc-alkaline series, and possess the characteristics of adakite. The geochemistry of the rocks...Volcanic rocks in the study area, including dacite, trachyandesite and mugearite, belong to the intermediate-acid, high-K calc-alkaline series, and possess the characteristics of adakite. The geochemistry of the rocks shows that the rocks are characterized by SiO2>59%, enrichment in A12O3(15.09-15.64%) and Na2O (>3.6%), high Sr (649-885 μg/g) and Sc, low Y contents (<17 μg/g), depletion in HREE (Yb<1.22 μg/g), (La/Yb)N>25, Sr/Y>40, MgO<3% (Mg<0.35), weak Eu anomaly (Eu/Eu=0.84-0.94), and lack of the high field strength elements (HFSE) (Nb, Ta, Ti, etc.). The Nd and Sr isotope data (87Sr/86Sr=0.7062-0.7079, 143Nd/144Nd=0.51166-0.51253, εNd= -18.61-0.02), show that the magma resulted from partial melting (10%-40%) of newly underplated basaltic lower crust under high pressure (1-4 GPa), and the petrogenesis is obviously affected by the crust's assimilation and fractional crystallization (AFC). This research will give an insight into the uplift mechanism of the Tibetan plateau.展开更多
Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysi...Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysis, we found that: (1) up to 82 mole% methane exists in the primary inclusions hosted in the reservoir volcanic rocks; (2) high CH4 inclusions recognized in the volcanic rocks correspond to CH4-bcaring CO2 reservoirs that are rich in helium and with a high ^3He/^4He ratio and which show reversed order of 813C in alkane; (3) in gas reservoirs of such abiotic methane (〉80%) and a mix of CH4 and CO2, the enclosed content of CH4 in the volcanic inclusions is usually below 42 mole%, and the reversed order of δ^13C in alkane is sometimes irregular in the corresponding gas pools; (4) a glassy inclusion with a homogeneous temperature over 900℃ also contains a small portion of CH4 although predominantly CO2. This affinity between gas pool and content of inclusion in the same volcanic reservoirs demonstrates that magma-originated gases, both CH4 and CO2, have contributed significantly to the corresponding gas pools and that the assumed hydrocarbon budget of the bulk earth might be much larger than conventionally supposed.展开更多
This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plum...This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.展开更多
Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed...Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.展开更多
The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formatio...The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.展开更多
Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of ...Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.展开更多
The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic ...The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic rocks and komatiites from the Song Da Zone in northern Vietnam. The results suggest that the age of meta-basic volcanic rocks is Late Permian, rather than the Early Permian or Early Carboniferous ages as previously inferred. Most meta-basic volcanic rocks are strongly enriched in LREEs relative to HREEs and display trace element patterns similar to the ELIP high-Ti basalts, and are enriched in LILEs with negative Sr anomalies. Their initial 87^Sr/86^Sr ratios range from 0.705974 to 0.706188 and εNd(t) from-0.82 to-2.11. Their magmas were derived from an enriched and deep mantle source without significant crustal contamination. These meta-basic volcanic rocks formed in ELIP. Therefore, the Tengtiaohe Zone is not an ophiolite zone and can link to the Song Da Zone in northern Vietnam.展开更多
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
文摘The geological features of three types of tropical volcanic rock and soil distributed along Jakarta-Bandung high-speed railway(HSR),including pozzolanic clayey soil,mud shale and deep soft soil,are studied through field and laboratory tests.The paper analyzes the mechanism and causes of engineering geological problems caused by tropical volcanic rock and soil and puts forward measures to control subgrade slope instability by rationally determining project type,making side slope stability control and strengthening waterproofing and drainage.The“zero front slope”tunneling technology at the portal,the simplified excavation method of double-side wall heading and the cross brace construction method of arch protection within the semi-open cut row pile frame in the“mountainside”eccentrically loaded soft soil stratum are adopted to control the instability of tunnel side and front slopes,foundation pits and working faces;CFG or pipe piles shall be used to reinforce soft and expansive foundation or replacement measures shall be taken,and the scheme of blind ditch+double-layer water sealing in ballastless track section shall be put forward to prevent arching deformation of foundation;the treatment measures of CFG pile,pipe pile and vacuum combined piled preloading are adopted to improve the bearing capacity of foundation in deep soft soil section and solve the problems of settlement control and uneven settlement.These engineering countermeasures have been applied during the construction of Jakarta-Bandung HSR and achieved good results.
文摘The Fossil Hill Formation of the type section composed chiefly of the sedimentary-volcaniclastic breccia and tuffites can be divided into two cycles of sedimentation. The thermal fluid was active in the coarse volcaniclastic deposits of the lower cy-cle, it led to the formation of laumontite,analcite,albite and regularly hybrid mineral of interlayered chlorite and montmorillonite .which are absent from the upper cycle, and to the transportation and concentration of some of trace elements between the coarser tuffites and the overlying fine tuffite bed at the upper part of this cycle. So-called 'rainprint' and 'mud crack' actually are non-sedimentary originally, they were formed respectively by sheddillg of the small zeolitized concretions on the bedding plane and tectonic pressed stress. The evidences indicate that the Fossil Hill Formation of the Fossil Hill section was deposited in an intermontane lake affected by both volcanic action andseasonal flail under the condition of worm and moist climate.
基金Supported by the National Natural Science Foundation Project of China(42072161)College Basic Research Funding Project(22CX07008A).
文摘Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopic composition analysis were combined to clarify the genesis of granular calcite in the lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin.It is found that the granular calcite is distributed with laminated characteristics in fine-grained sedimentary rocks in tuffite zones(or the transitional zone between tuffite and micritic dolomite).Granular calcite has obvious cathodoluminesence band,and it can be divided into three stages.Stage-Ⅰ calcite,with non-luminesence,high content of Sr element,inclusions containing Cos,and homogenization temperature higher than 170℃,was directly formed from the volcanic-hydrothermal deposition.Stage-Ⅱ calcite,with bright yellow luminescence,high contents of Fe,Mn and Mg,enrichment of light rare earth elements(LREEs),and high homogenization temperature,was formed by recrystallization of calcareous edges from exhalative hydrothermal deposition.Stage-IlI calcite,with dark orange luminescence band,high contents of Mg,P,V and other elements,no obvious fractionation among LREEs,and low homogenization temperature,was originated from diagenetic transformation during burial.The granular calcite appears regularly in the vertical direction and its formation temperature decreases from the center to the margin of particles,providing direct evidences for volcanic-hydrothermal events during the deposition of the Lucaogou Formation.The volcanic-hydrothermal event was conducive to the enrichment of organic matters in fine-grained sedimentary rocks of the Lucaogrou Formation,and positive to the development of high-quality source rocks.The volcanic-hydrothermal sediments might generate intergranular pores/fractures during the evolution,creating conditions for the self-generation and self-storage of shale oil.
文摘Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.
基金supported by the National Natural Science Foundation of China(Grant No.41872080)the National Basic Research Program of China(Grant No.2015CB452603)+1 种基金the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Beijing)(Grant No.MSFGPMR201804)and the Fundamental Research Funds for the Central Universities of China(Grant Nos.2652016077,2652017223)
文摘The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.
基金supported by the National Natural Science Foundation of China(Grant No.40672038).
文摘Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean ^206pb/^238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean ^206pb/^238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean ^206pb/^238U age of 113±4 Ma. The volcanic rocks have SIO2=60.24%-77.46%, MGO=0.36%-1.29% (Mg#=0.32-0.40) for the Naozhigou Formation, SIO2=51.60%-59.32%, MGO=3.70%-5.54% (Mg#=0.50-0.60) for the Ergulazi Formation, and SIO2=58.28%-76.32%, MGO=0.07%-1.20% (Mg#=0.14-0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial ^87Sr/^86Sr ratios (0.7053-0.7083) and low εNd(t) values (-8.38 to -2.43), and display an EMⅡ trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.
文摘Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at -1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent.
基金the National Natural Science Foundation of China (Grant No. 40672038) the Special Grant of 0il & Gas Research (XQ-2004-07).
文摘Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the ^206Pb/^238U ages of zircons from andesite range within 105- 106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that ^206pb/^238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Snifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg^#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and lightrare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial ^87Sr/^86Sr ratios (0.7041-0.7057) and positive εNd(t) ValUes (0.39-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.
基金supported by the"Fivesecond"National Science and Technology Support Program(No.2011BAB04B05)Technology and Development Project of China Petroleum & Chemical Zorporation(No.YPH08110)Chinese Geological Survey(No.1212011121091)
文摘The Early Neoproterozoic Beiyixi Formation volcanic rocks of the southern Quruqtagh comprise mainly of a suite of tholeiitic basalts, alkaline andesites, and calc-alkaline rhyolites. The rhyolites are characterized by variably fractionated enrichment in light rare earth elements (LREE) and fiat in heavy rare earth elements (HREE), and strongly negative Eu anomalies. Compared to the rhyolites, the andesites also exhibit enrichment in LREE and flat HREE (chondrite-normalized values of La/Yb,and La/Sm are 13.30-41.09, 3.18-6.89 respectively). Their rare earth element patterns display minor negative Eu anomalies. Both of them exhibit coherent patterns with strongly to moderately negative anomalies of Nb, Zr, Ti, and Hf on spider diagrams. Two rhyolite and one andesite magmatic zircons with defined oscillatory zoning yielded weighted mean 206pb/23Su ages of 743 ± 7 Ma, 741±2 Ma, and 7274 Ma. These ages are interpreted to represent the timing of volcanic eruptions. According to geochemistry and rock type, these volcanic rocks formed within a continental island-arc environment following subduction of the oceanic crust during the Early Neoproterozoic period.
基金The Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences under contract Nos KZCX2- YW-211 and KZCX3-SW-223the National Natural Science Foundation of China under contract Nos 40830849 and 40976027+1 种基金Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No.JQ200913the National Major Fundamental Research and Development Project under contract No.G2000046701
文摘Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous,and lower in High Field Strength Elements (HFSE).These rocks are higher in Large Ion Lithophile Elements (LILE),thorium and uranium contents,positive lead anomalies,negative Nb-Ta anomalies,and enrichment in Light Rare Earth Elements (LREE).Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB),and rhyolites from the northern Okinawa Trough have the highest 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios.The NECS shelf margin basalts have lower 87 Sr/ 86 Sr ratios,ε N d and σ 18 O than the northern Okinawa Trough silicic rocks.According to 40 K– 40 Ar isotopic ages of basalts from the NECS shelf margin,rifting of the Okinawa Trough may have been active since at least 3.65–3.86 Ma.The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere.The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough,and the formation of basaltic magmas closely relates to the thinning of continental crust.The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough,which could have been generated by the interaction of basaltic melt with an enriched crustal component.From the Ryukyu island arc to East China,the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE),suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate,and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
基金funded by the National Natural Science Foundation of China(grant No. 40634022)
文摘Five volcanic rock samples and two granite samples taken from the volcanic basins in western Fujian and southern Jiangxi were dated by using the zircon laser albation-inductively coupled plasma mass spectrometry U-Pb method. Together with previously dated ages, the dates obtained provide important constraints on the timing of late Mesozoic tectonic events in SE China. The volcanic rock samples yield ages of 183.1±3.5 Ma, ca. 141 Ma to 135.8±1.1 Ma, 100.4±1.5 to 97.6±1.1 Ma, confirming three episodes of late Mesozoic volcanic activities, which peaked at 180±5 Ma, 140±5 Ma and 100±5 Ma, respectively, along the Wuyishan belt. Moreover, based on field investigations of these volcano-sedimentary basins, we have recognized two compressional tectonic events along this belt. The early one was characterized by Upper Triassic to Middle Jurassic NNE-trending folds that were intruded by late Jurassic granites; and the late one caused the Lower Cretaceous volcano-sedimentary layer to be tilted. The dated age 152.9±1.4 Ma of the granitic samples from the Hetian granitic pluton in the Changting Basin and that from the Baishiding granitic pluton, 100.2±1.8 Ma, in the Jianning Basin, give the upper boundaries of these two tectonic events respectively. Hence, the late Mesozoic tectonic evolution of SE China was alternated between extension and compression.
基金funded by the Open Foundation of the Beijing SHRIMP Center (DDC15-016)the Applied Basic Research Program Youth Project of Yunnan Province (2016DF031)the National Basic Research Program of China (2015CB452605)
文摘The Laojiezi alkaline volcanic rocks, which are located in the intraplate region of the Yangtze craton, coincide with the formation of the Jinshajiang-Ailaoshan-Red River alkaline rock belt. Although this belt has been widely studied by geologists because of its porphyry-related Pb-Ag-Au polymetallic deposit and geotectonic location, the material sources of this belt are still debate. Whole-rock analyses show that these rocks have high total alkali contents(3.73–11.08 wt%), and their aluminum saturation index(ASI) values widely vary from 0.82 to 3.07, which comprise a metaluminous-peraluminous magma series. These rocks are characterized by high K(K2 O/Na2 O>1) and low Ti and Mg contents; enrichment in large-ion lithophile elements, such as Rb, Ba, K and light rare earth elements; and depletion in high field strength elements, such as Ta, Nb, P, and Ti. These rocks exhibit moderate Eu(Eu/Eu*=0.86–1.04) and Ce(Ce/Ce*=0.63–0.96) anomalies. Their(87 Sr/86 Sr)i, εNd(t), zircon εHf(t) and δ18 O values range from 0.70839 to 0.71013, from-10.16 to-12.45, from-19.6 to-5.8, and from 5.69‰ to 8.54‰, respectively, and their Nd and Hf two-stage model ages(TDM2) are 1.67–1.86 Ga and 1.27–2.02 Ga, respectively. These data reflect the primary partial melting of Paleoproterozoic to Mesoproterozoic lower crust with minor residual continental lithospheric mantle and supracrustal metasediments. The lithosphere was likely thickened along the southeastern margin of the Tibetan Plateau following the Indian-Asian continentcontinent collision(65–41 Ma). During the post-collision phase(36–16 Ma), the transition from a compressional to extensional setting triggered the convective removal of the over-thickened CLM beneath the Yangtze craton, which led to the upwelling of asthenospheric materials. This process created alkali-rich and high-K magma through the partial melting of the thickened lower crust. Magma that carried Cu-Au-Pb-Ag minerals was emplaced by strike-slip motion along the E-to W-or ENE-to WSWtrending tectonically weak zone, finally forming an alkaline porphyry Cu-Au-Pb-Ag polymetallic deposit.
基金supported jointly by"the Ninth Five-Year Plan"key basic research program(Grant No.9501101-5)the Project of Knowledge Innovation sponsored by the Chinese Academy of Scienoes(Grant No.KZCX2-102the National Outstanding Young Scientists Fund Project(Grant No.49925309)
文摘Volcanic rocks in the study area, including dacite, trachyandesite and mugearite, belong to the intermediate-acid, high-K calc-alkaline series, and possess the characteristics of adakite. The geochemistry of the rocks shows that the rocks are characterized by SiO2>59%, enrichment in A12O3(15.09-15.64%) and Na2O (>3.6%), high Sr (649-885 μg/g) and Sc, low Y contents (<17 μg/g), depletion in HREE (Yb<1.22 μg/g), (La/Yb)N>25, Sr/Y>40, MgO<3% (Mg<0.35), weak Eu anomaly (Eu/Eu=0.84-0.94), and lack of the high field strength elements (HFSE) (Nb, Ta, Ti, etc.). The Nd and Sr isotope data (87Sr/86Sr=0.7062-0.7079, 143Nd/144Nd=0.51166-0.51253, εNd= -18.61-0.02), show that the magma resulted from partial melting (10%-40%) of newly underplated basaltic lower crust under high pressure (1-4 GPa), and the petrogenesis is obviously affected by the crust's assimilation and fractional crystallization (AFC). This research will give an insight into the uplift mechanism of the Tibetan plateau.
文摘Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysis, we found that: (1) up to 82 mole% methane exists in the primary inclusions hosted in the reservoir volcanic rocks; (2) high CH4 inclusions recognized in the volcanic rocks correspond to CH4-bcaring CO2 reservoirs that are rich in helium and with a high ^3He/^4He ratio and which show reversed order of 813C in alkane; (3) in gas reservoirs of such abiotic methane (〉80%) and a mix of CH4 and CO2, the enclosed content of CH4 in the volcanic inclusions is usually below 42 mole%, and the reversed order of δ^13C in alkane is sometimes irregular in the corresponding gas pools; (4) a glassy inclusion with a homogeneous temperature over 900℃ also contains a small portion of CH4 although predominantly CO2. This affinity between gas pool and content of inclusion in the same volcanic reservoirs demonstrates that magma-originated gases, both CH4 and CO2, have contributed significantly to the corresponding gas pools and that the assumed hydrocarbon budget of the bulk earth might be much larger than conventionally supposed.
基金financially supported by the National Natural Science Foundation of China(Nos.41173065,41572205)the Geological Survey of China(Grant no.DD20160345)Ministry of Science and Technology(No.2012FY120100)
文摘This work presents zircon U–Pb age and wholerock geochemical data for the volcanic rocks from the Lakang Formation in the southeastern Tethyan Himalaya and represents the initial activity of the Kerguelen mantle plume. SHRIMP U–Pb dating of zircons from the volcanic rocks yielded a ^(206) Pb/^(238) U age of 147 ± 2 Ma that reflects the time of Late Jurassic magmatism. Whole rock analyses of major and trace elements show that the volcanic rocks are characterized by high content of Ti O_2(2.62 wt%–4.25 wt%) and P_2O_5(0.38 wt%–0.68 wt%), highly fractionated in LREE/HREE [(La/Yb)N= 5.35–8.31] with no obvious anomaly of Eu, and HFSE enrichment with no obvious anomaly of Nb and Ta, which are similar to those of ocean island basalts and tholeiitic basaltic andesites indicating a mantle plume origin. The Kerguelen mantle plume produced a massive amount of magmatic rocks from Early Cretaceous to the present, which widely dispersed from their original localities of emplacement due to the changing motions of the Antarctic, Australian, and Indian plates. However, our new geochronological and geochemical results indicate that the Kerguelen mantle plume started from the Late Jurassic. Furthermore, we suggest that the Kerguelen mantle plume may played a significant role in the breakup of eastern Gondwanaland according to the available geochronological, geochemical and paleomagnetic data.
文摘Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.
基金supported by the Major State Basic Research Development Program of China (973 Program(No.2012CB214705))the National Natural Science Foundation of China (No. 41206035)
文摘The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41272092,41421002 and 41072068)Program for Changjiang Scholars and Innovative Research Team in University(Grant IRT1281)+1 种基金Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2013JZ013)Graduate Innovation Funds of Northwest University,China(Grant No.YZZ12006)
文摘Precise in situ zircon U-Pb dating and Lu-Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr-Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.
基金supported by National Natural Science Foundation of China(Grant No.41172202,No.41190073 and No.41302178)China Geological Survey(Grant No.1212011121256)+2 种基金National Basic Research Program of China(2014CB440901)the Fundamental Research Funds for the Central Universities to SYSUState Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences in Wuhan(MSFGPMR201402)
文摘The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic rocks and komatiites from the Song Da Zone in northern Vietnam. The results suggest that the age of meta-basic volcanic rocks is Late Permian, rather than the Early Permian or Early Carboniferous ages as previously inferred. Most meta-basic volcanic rocks are strongly enriched in LREEs relative to HREEs and display trace element patterns similar to the ELIP high-Ti basalts, and are enriched in LILEs with negative Sr anomalies. Their initial 87^Sr/86^Sr ratios range from 0.705974 to 0.706188 and εNd(t) from-0.82 to-2.11. Their magmas were derived from an enriched and deep mantle source without significant crustal contamination. These meta-basic volcanic rocks formed in ELIP. Therefore, the Tengtiaohe Zone is not an ophiolite zone and can link to the Song Da Zone in northern Vietnam.