Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires ener...Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.展开更多
It is well known that [6,6]-phenyl-C<sub><span style="font-size:12px;font-family:Verdana;">61</span></sub><span style="font-size:12px;font-family:Verdana;">-butyric ac...It is well known that [6,6]-phenyl-C<sub><span style="font-size:12px;font-family:Verdana;">61</span></sub><span style="font-size:12px;font-family:Verdana;">-butyric acid methyl ester (PCBM) is a common n-type passivation material in PSCs, usually used as an interface modification layer. However, PCBM is extremely expensive and is not suitable for future industrialization. Herein, the various concentrations of PCBM as an additive are adopted for PSCs. It not only avoids the routine process of spin coating the multi-layer films, but also reduces the PCBM material and cost. Meanwhile, PCBM can passivate the grain surface and modulate morphology of perovskite films. Furthermore, the most important optical parameters of solar cells, the current density (</span><i><span style="font-size:12px;font-family:Verdana;">J</span><sub><span style="font-size:12px;font-family:Verdana;">sc</span></sub></i><span style="font-size:12px;font-family:Verdana;">), fill factor (FF), open-circuit voltage (</span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;">) and power conversion efficiencies (PCE) were improved. Especially, when the PCBM doping ratio in CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">NH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">PbI</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;"> (MAPbI</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">) precursor solution was 1</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-size:12px;font-family:Verdana;">wt%, the device obtained the smallest </span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;"> decay (less than 1%) in the p-i-n type PSCs with poly</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-size:12px;font-family:Verdana;">(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) as hole transport layer (HTL) and fullerene (C</span><sub><span style="font-size:12px;font-family:Verdana;">60</span></sub><span style="font-size:12px;font-family:Verdana;">) as electron transport layer (ETL). The PSCs </span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;"> stability improvement is attri</span><span style="font-size:12px;font-family:Verdana;">buted to enhanced crystallinity of photoactive layer and decreased non-radiative </span><span style="font-size:12px;font-family:Verdana;">recombination by PCBM doping in the perovskites.</span></span></span></span>展开更多
In recent years, with the emergence of non-fullerene fused-ring acceptors, power conversion efficiencies (PCEs) of organic solar cells (OSCs) have exceeded 19%.However, compared to inorganic or perovskite photovoltaic...In recent years, with the emergence of non-fullerene fused-ring acceptors, power conversion efficiencies (PCEs) of organic solar cells (OSCs) have exceeded 19%.However, compared to inorganic or perovskite photovoltaic cells, a higher voltage loss has become one of the key factors limiting further improvement in the PCEs of OSCs.The ternary/quaternary strategy has been identified as a feasible and effective way to obtain high-efficiency OSCs.In this review, a brief outline is given of the key roles that guest materials played in reducing voltage losses in solar cell devices and a brief look at the future material design and the design of ternary/quaternary systems.展开更多
Reducing the voltage loss(Vloss)is a critical factor in optimizing the open-circuit voltage(Voc)and overall power-c on version efficie ncy(PCE)of polymer solar cells.In the current work,by designing a novel electron-a...Reducing the voltage loss(Vloss)is a critical factor in optimizing the open-circuit voltage(Voc)and overall power-c on version efficie ncy(PCE)of polymer solar cells.In the current work,by designing a novel electron-accepting unit of coronenediimide(CDI)and using it as the main functional building block,a new polymer acceptor CDI-V is developed and applied to fabricate all-polymer solar cells.Compared with the perylenediimide-based polymer acceptors we previously reported,the current CDI-V polymer possesses a noticeably elevated lowest unoccupied molecular orbital(LUMO).Thereby,by virtue of the enlarged energy gap between the donor HOMO and acceptor LUMO,a high Voc value of 1.05 V is achieved by the all-polymer photovolatic device,along with an impressively low Vloss of 0.55 V.As remarkably,in spite of an extremely small LUMO level offset of 0.01 eV exhibited by the donor and acceptor polymers,effective charge separation still takes place in the allpolymer device,as evidenced by a proper short-circuit current(Jsc)of 9.5 mA·cm^-2 and a decent PCE of 4.63%.展开更多
Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic–inorganic hybrid perovs...Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic–inorganic hybrid perovskite solar cells(PSCs),but the larger voltage loss(V_(loss)) cannot be ignored, especially CsPbIBr_(2), which limits the improvement of efficiency. To reduce V_(loss), one promising solution is the modification of the energy level alignment between the perovskite layer and adjacent charge transport layer(CTL), which can facilitate charge extraction and reduce carrier recombination rate at the perovskite/CTL interface. Therefore, the key issues of minimum V_(loss) and high efficiency of CsPbIBr_(2)-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of the CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage(V_(oc)) is increased from 1.37 V to 1.52 V by replacing SnO_(2) with ZnO as the electron transport layer(ETL) due to more matching conduction band with the CsPbIBr;layer.展开更多
Subsea power converters have been identified in recent researches as a potential means of supplying power to subsea loads and this technology has been seen as a means to reduce the reliance on offshore platforms. This...Subsea power converters have been identified in recent researches as a potential means of supplying power to subsea loads and this technology has been seen as a means to reduce the reliance on offshore platforms. This study analyses all electric subsea high power system for power generation and transmission in the offshore oil and gas industry for sustainable subsea development. In order to accomplish the analysis of power generation and transmission to subsea loads, the MAT lab SIMULINK software was employed to ascertain losses arising from the transmission of power to subsea systems. Data from Agbara and Akpo fields, all located in Nigeria, were analysed using the MSDC model as an alternative power source for power generation and transmission to all subsea loads. When the voltage loss between a step out distance at 30 km and 200 km was compared for the Akpo oil field, the plots indicate a significant loss in voltage. The RMS value of voltage loss increased from 0.8874 at a step out distance 30 km to 0.9449 for 200 km.展开更多
CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.Howe...CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.展开更多
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit....A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.展开更多
Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)...Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)as the donor unit(D)and thieno[3,2-b]thiophene(TT)as theπbridge to construct a new type of D-π-A polymer PE70.Based on PE70,we adopt the chlorination strategy to fine-tune photoelectric characteristics and film morphology,and then developed PE74 and PE75.By blending with non-fullerene acceptor(NFA)Y6,device based on PE74 with chloride substitution on the BDT unit showed increasing photovoltaic performance.In addition,further chlorine substitution on the IID(PE75)would greatly reduce the non-radiative voltage loss(ΔV3),and the distorted molecular conformation also took responsible for the excessive recombination.As results,PE74:Y6-based device achieves a power conversion efficiency(PCE)of 11.06%with open-circuit voltage(VOC)of 0.76 V,which are higher than those of PE70:Y6(PCE of 10.40%and VOC of 0.72 V)and PE75:Y6-based device(PCE of 6.24%and VOC of 0.84 V).This work demonstrates the regularity of the photovoltaic performance caused by chlorination strategy in polymer in the non-fullerene OSC devices,which provide important insights into highperformance photovoltaic materials.展开更多
In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values o...In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values of half-wave voltage and bandwidth as well as the optimized electrode's dimension whether considering the conductor loss or not. As an example, we present a Mach-Zehnder (MZ) type polymer waveguide amplitude modulator. The half-wave voltage increases by 1 V and the 3-dB bandwidth decreases by 30% when the conductor loss is taken into account. Besides, the effects of impedance mismatching and velocity mismatching between microwave and light wave on the half-wave voltage, and 3-dB bandwidth are discussed.展开更多
Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism...Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism of CZTSSe solar cell have been carried out in the past few years,no convincing understanding has been obtained until now.In this review,the current findings regarding the underlying mechanism of the efficiency loss in CZTSSe solar cells are systematically summarized and analyzed.The properties of atomic disorder and deep defects in CZTSSe materials and their effects on device performance are discussed.The synergistic effect is proposed to help understand the defect-related charge loss in the absorber.Furthermore,the experimental methods of defect identification and defect control are presented,in an attempt to identify the killer defects that can be responsible for the ultra-short minority lifetime of CZTSSe material.By comprehensively and dialectically understanding these defect properties of the CZTSSe solar cell,we believe breakthrough in the cell efficiency will come soon with our concentrated effort.展开更多
An overall analysis of the trench superjunction insulated gate bipolar transistor(SJ IGBT) is presented and a detailed comparison between a trench SJ IGBT and a trench field stop IGBT is made by simulating with Sent...An overall analysis of the trench superjunction insulated gate bipolar transistor(SJ IGBT) is presented and a detailed comparison between a trench SJ IGBT and a trench field stop IGBT is made by simulating with Sentaurus TC AD.More specifically,simulation results show that the trench SJ IGBT exhibits a breakdown voltage that is raised by 100 V while the on-state voltage is reduced by 0.2 V.Atthe same time,the turn-off loss is decreased by 50%.The effect of charge imbalance on the static and dynamic characteristics of the trench SJ IGBT is studied, and the trade-off between parameters and their sensitivity versus charge imbalance is discussed.展开更多
基金National Research Foundation of Korea,Grant/Award Number:2022R1A6A1A03051158BrainLink Program,Grant/Award Number:2022H1D3A3A01077343Nano Material Technology Development Program,Grant/Award Number:2021M3H4A1A02057007。
文摘Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.
文摘It is well known that [6,6]-phenyl-C<sub><span style="font-size:12px;font-family:Verdana;">61</span></sub><span style="font-size:12px;font-family:Verdana;">-butyric acid methyl ester (PCBM) is a common n-type passivation material in PSCs, usually used as an interface modification layer. However, PCBM is extremely expensive and is not suitable for future industrialization. Herein, the various concentrations of PCBM as an additive are adopted for PSCs. It not only avoids the routine process of spin coating the multi-layer films, but also reduces the PCBM material and cost. Meanwhile, PCBM can passivate the grain surface and modulate morphology of perovskite films. Furthermore, the most important optical parameters of solar cells, the current density (</span><i><span style="font-size:12px;font-family:Verdana;">J</span><sub><span style="font-size:12px;font-family:Verdana;">sc</span></sub></i><span style="font-size:12px;font-family:Verdana;">), fill factor (FF), open-circuit voltage (</span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;">) and power conversion efficiencies (PCE) were improved. Especially, when the PCBM doping ratio in CH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">NH</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">PbI</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;"> (MAPbI</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-size:12px;font-family:Verdana;">) precursor solution was 1</span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-size:12px;font-family:Verdana;">wt%, the device obtained the smallest </span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;"> decay (less than 1%) in the p-i-n type PSCs with poly</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-size:12px;font-family:Verdana;">(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) as hole transport layer (HTL) and fullerene (C</span><sub><span style="font-size:12px;font-family:Verdana;">60</span></sub><span style="font-size:12px;font-family:Verdana;">) as electron transport layer (ETL). The PSCs </span><i><span style="font-size:12px;font-family:Verdana;">V</span><sub><span style="font-size:12px;font-family:Verdana;">oc</span></sub></i><span style="font-size:12px;font-family:Verdana;"> stability improvement is attri</span><span style="font-size:12px;font-family:Verdana;">buted to enhanced crystallinity of photoactive layer and decreased non-radiative </span><span style="font-size:12px;font-family:Verdana;">recombination by PCBM doping in the perovskites.</span></span></span></span>
基金acknowledge the financial supports from the Department of Science and Technology of Inner Mongolia(No.2020GG0192)the Natural Science Foundation of Inner Mongolia(No.2022ZD04)+1 种基金the Inner Mongolia Normal University(No.112/1004031962)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Fund(No.S20210274Z).
文摘In recent years, with the emergence of non-fullerene fused-ring acceptors, power conversion efficiencies (PCEs) of organic solar cells (OSCs) have exceeded 19%.However, compared to inorganic or perovskite photovoltaic cells, a higher voltage loss has become one of the key factors limiting further improvement in the PCEs of OSCs.The ternary/quaternary strategy has been identified as a feasible and effective way to obtain high-efficiency OSCs.In this review, a brief outline is given of the key roles that guest materials played in reducing voltage losses in solar cell devices and a brief look at the future material design and the design of ternary/quaternary systems.
基金the National Natural Science Foundation of China(Nos.21674001,21925501,and 21790363)the High-performance Computing Platform of Peking University for the computational resources+2 种基金the Hong Kong Research Grants Council(Nos.T23-407/13 N,N_HKUST623/13Z 16305915,16322416,and 606012)HKJEBN Limited,HKUST presidents office(No.FP201)Hong Kong Innovation and Technology Commissi on(Nos.ITCCNERC14SC01 and ITS/083/15).
文摘Reducing the voltage loss(Vloss)is a critical factor in optimizing the open-circuit voltage(Voc)and overall power-c on version efficie ncy(PCE)of polymer solar cells.In the current work,by designing a novel electron-accepting unit of coronenediimide(CDI)and using it as the main functional building block,a new polymer acceptor CDI-V is developed and applied to fabricate all-polymer solar cells.Compared with the perylenediimide-based polymer acceptors we previously reported,the current CDI-V polymer possesses a noticeably elevated lowest unoccupied molecular orbital(LUMO).Thereby,by virtue of the enlarged energy gap between the donor HOMO and acceptor LUMO,a high Voc value of 1.05 V is achieved by the all-polymer photovolatic device,along with an impressively low Vloss of 0.55 V.As remarkably,in spite of an extremely small LUMO level offset of 0.01 eV exhibited by the donor and acceptor polymers,effective charge separation still takes place in the allpolymer device,as evidenced by a proper short-circuit current(Jsc)of 9.5 mA·cm^-2 and a decent PCE of 4.63%.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52192610)the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020GY-310)+2 种基金Youth Project of Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-189)the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (Grant No. 2020GXLH-Z-018)the Fundamental Research Funds for the Central Universities, China。
文摘Due to excellent thermal stability and optoelectronic properties, all-inorganic perovskite is one of the promising candidates to solve the thermal decomposition problem of conventional organic–inorganic hybrid perovskite solar cells(PSCs),but the larger voltage loss(V_(loss)) cannot be ignored, especially CsPbIBr_(2), which limits the improvement of efficiency. To reduce V_(loss), one promising solution is the modification of the energy level alignment between the perovskite layer and adjacent charge transport layer(CTL), which can facilitate charge extraction and reduce carrier recombination rate at the perovskite/CTL interface. Therefore, the key issues of minimum V_(loss) and high efficiency of CsPbIBr_(2)-based PSCs were studied in terms of the perovskite layer thickness, the effects of band offset of the CTL/perovskite layer, the doping concentration of the CTL, and the electrode work function in this study based on device simulations. The open-circuit voltage(V_(oc)) is increased from 1.37 V to 1.52 V by replacing SnO_(2) with ZnO as the electron transport layer(ETL) due to more matching conduction band with the CsPbIBr;layer.
文摘Subsea power converters have been identified in recent researches as a potential means of supplying power to subsea loads and this technology has been seen as a means to reduce the reliance on offshore platforms. This study analyses all electric subsea high power system for power generation and transmission in the offshore oil and gas industry for sustainable subsea development. In order to accomplish the analysis of power generation and transmission to subsea loads, the MAT lab SIMULINK software was employed to ascertain losses arising from the transmission of power to subsea systems. Data from Agbara and Akpo fields, all located in Nigeria, were analysed using the MSDC model as an alternative power source for power generation and transmission to all subsea loads. When the voltage loss between a step out distance at 30 km and 200 km was compared for the Akpo oil field, the plots indicate a significant loss in voltage. The RMS value of voltage loss increased from 0.8874 at a step out distance 30 km to 0.9449 for 200 km.
基金supported by the National Natural Science Foundation of China(22379010,22109166,22309191)Chinese Academy of Sciences。
文摘CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.
基金This research was supported by the Science and Technology Plan Project of Sichuan Province(No.21YYJC3324)the Science and Technology Plan Project of Sichuan Province(No.2022YFQ0104).
文摘A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%.
基金the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH033)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)the National Natural Science Foundation of China(NSFC,Nos.21875052,51873044,52073067).
文摘Isoindigo(IID)has been widely used as strong acceptor unit(A)to construct narrow bandgap polymers in organic field effect transistors(OFETs)and organic solar cells(OSCs).Combing with IID,we chose benzodithiophene(BDT)as the donor unit(D)and thieno[3,2-b]thiophene(TT)as theπbridge to construct a new type of D-π-A polymer PE70.Based on PE70,we adopt the chlorination strategy to fine-tune photoelectric characteristics and film morphology,and then developed PE74 and PE75.By blending with non-fullerene acceptor(NFA)Y6,device based on PE74 with chloride substitution on the BDT unit showed increasing photovoltaic performance.In addition,further chlorine substitution on the IID(PE75)would greatly reduce the non-radiative voltage loss(ΔV3),and the distorted molecular conformation also took responsible for the excessive recombination.As results,PE74:Y6-based device achieves a power conversion efficiency(PCE)of 11.06%with open-circuit voltage(VOC)of 0.76 V,which are higher than those of PE70:Y6(PCE of 10.40%and VOC of 0.72 V)and PE75:Y6-based device(PCE of 6.24%and VOC of 0.84 V).This work demonstrates the regularity of the photovoltaic performance caused by chlorination strategy in polymer in the non-fullerene OSC devices,which provide important insights into highperformance photovoltaic materials.
文摘In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values of half-wave voltage and bandwidth as well as the optimized electrode's dimension whether considering the conductor loss or not. As an example, we present a Mach-Zehnder (MZ) type polymer waveguide amplitude modulator. The half-wave voltage increases by 1 V and the 3-dB bandwidth decreases by 30% when the conductor loss is taken into account. Besides, the effects of impedance mismatching and velocity mismatching between microwave and light wave on the half-wave voltage, and 3-dB bandwidth are discussed.
基金supported by the National Natural Science Foundation of China(51961165108,51421002,51972332 and 51627803)。
文摘Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism of CZTSSe solar cell have been carried out in the past few years,no convincing understanding has been obtained until now.In this review,the current findings regarding the underlying mechanism of the efficiency loss in CZTSSe solar cells are systematically summarized and analyzed.The properties of atomic disorder and deep defects in CZTSSe materials and their effects on device performance are discussed.The synergistic effect is proposed to help understand the defect-related charge loss in the absorber.Furthermore,the experimental methods of defect identification and defect control are presented,in an attempt to identify the killer defects that can be responsible for the ultra-short minority lifetime of CZTSSe material.By comprehensively and dialectically understanding these defect properties of the CZTSSe solar cell,we believe breakthrough in the cell efficiency will come soon with our concentrated effort.
基金supported by the National Major Science and Technology Special Project of China(No.2011ZX02504-002)
文摘An overall analysis of the trench superjunction insulated gate bipolar transistor(SJ IGBT) is presented and a detailed comparison between a trench SJ IGBT and a trench field stop IGBT is made by simulating with Sentaurus TC AD.More specifically,simulation results show that the trench SJ IGBT exhibits a breakdown voltage that is raised by 100 V while the on-state voltage is reduced by 0.2 V.Atthe same time,the turn-off loss is decreased by 50%.The effect of charge imbalance on the static and dynamic characteristics of the trench SJ IGBT is studied, and the trade-off between parameters and their sensitivity versus charge imbalance is discussed.