In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltag...In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.展开更多
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage...The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.展开更多
This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP ch...This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP charge model to characterize the bias-dependent extrinsic capacitance instead of numerical functions with strong non-linearity.The simulation convergence is greatly improved by this method.An original scheme is developed to extract the parameters of the PSP charge model based on S-parameters measurement.The interconnection parasitics of the cross-coupled MOSFETs are modeled based on vector fitting.The model is verified with an LC VCO design,and exhibits excellent convergence during simulation.The results show improvements as high as 60.5% and 61.8% in simulation efficiency and accuracy,respectively,indicating that the proposed model better characterizes optimized cross-coupled MOSFETs in advanced radio frequency(RF) circuit design.展开更多
In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for cri...In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for critical communication systems with high oscillation frequency. An ideal approach has been presented with substrate biasing technique for reduction of power consumption. The simulation have been completed using cadence virtuoso 45 nm standard CMOS technology at room temperature 27~C with supply voltage Vc^d = 0.7 V. The simulation results suggest that voltage controlled ring oscillator has characterized with efficient low power voltage controlled oscillator (VCO) in term of minimum leakage power (1.23 nW) and maximum oscilla- tion frequency (4.76 GHz) with joint positive channel metal oxide semiconductor and negative channel metal oxide semiconductor (PMOS and NMOS) reverse sub- strate bias technique. PMOS, NMOS and joint reverse body bias techniques have been compared in the presented work.展开更多
New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capac...New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capacitor) and not requiring any component-matching conditions and design constraints for the intended type of inductance realization. The workability and applications of the new circuits have been demonstrated by SPICE simulation and hardware experimental results based upon AD844-type CFOAs and AD633-type/MPY534 type analog multipliers.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coup...The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coupling(PCC) in the AC multi-MG system(MMS). When an MMS consists of sub-MGs connected in series, power flow between the sub-MGs is not possible if the PCC voltage regulation relies on traditional consensus control objectives. In addition, communication faults and sensor faults are inevitable in the MMS. Therefore, a resilient voltage regulation strategy based on containment control is proposed.First, the feedback linearization technique allows us to deal with the nonlinear distributed generation(DG) dynamics, where the PCC regulation problem of an AC MG is transformed into an output feedback tracking problem for a linear multi-agent system(MAS) containing nonlinear dynamics. This process is an indispensable pre-processing in control algorithm design. Moreover, considering the unavailability of full-state measurements and the potential faults present in the sensors, a novel follower observer is designed to handle communication faults. Based on this, a controller based on containment control is designed to achieve voltage regulation. In regulating multiple PCC voltages to a reasonable upper and lower limit, a voltage difference exists between sub-MGs to achieve power flow. In addition, the secondary control algorithm avoids using global information of directed communication network and fault boundaries for communication link and sensor faults. Finally, the simulation results verify the performance of the proposed strategy.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is...In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.展开更多
An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS)...An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering ...Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser...The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.展开更多
A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conven...A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.展开更多
Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point c...Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.展开更多
As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative auto...As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative automatic control has been possible due to the recent advances in computers and communication networks, the hierarchical voltage control system, consisting of primary, secondary, and tertiary control, has been applied in several European countries. Recently the Korea power system has been operated more closely to stability limits because of rapid growth in load-demand as seen in Europe. For this reasons, Korea electric power corporation recognized the need of the voltage control system and developed the voltage control system. This paper presents an intelligent voltage control system for domestic power system using numerical algorithm based on the sensitivity matrix and the expert system. Dynamic characteristics of the developed system are investigated using EMTDC (electromagnetic transient DC analysis program) and RTDS (real time digital simulator). Several case studies showed the promising performance.展开更多
An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This pr...An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This problem is in fact a global coordination control problem which involves not only sequencing and timing different control devices but also tuning the parameters of controllers. A multi-stage coordinated control scheme is presented, aiming at retaining good voltage levels with minimal control efforts and costs after severe disturbances in power systems. A self-pattem-recognized vaccination procedure is developed to transfer effective heuristic information into the new generation of solution candidates to speed up the convergence of the search procedure to global optima. An example of four bus power system case study is investigated to show the effectiveness and efficiency of the proposed algorithm, compared with several existing approaches such as differential dynamic programming and tree-search.展开更多
Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study...Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.展开更多
The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values...The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values of magnetic moment components are critical for the switching effect, which should satisfy a definite condition. The external magnetic field which affects only the oscillation period should be comparable to the internal magnetic field. If the external magnetic field is too small, the switching effect will disappear. The precessions of mx and my are the best for the tilt angle of the external magnetic field θt = 0?, i.e., the field is perpendicular to the sample plane.展开更多
基金supported by the National Key R&D Program of China (2018AAA0101701)the National Natural Science Foundation of China (62073220,61833012)。
文摘In this paper,distributed model predictive control(DMPC) for island DC micro-grids(MG) with wind/photovoltaic(PV)/battery power is proposed,which coordinates all distributed generations(DG) to stabilize the bus voltage together with the insurance of having computational efficiency under a real-time requirement.Based on the feedback of the bus voltage,the deviation of the current is dispatched to each DG according to cost over the prediction horizon.Moreover,to avoid the excessive fluctuation of the battery power,both the discharge-charge switching times and costs are considered in the model predictive control(MPC) optimization problems.A Lyapunov constraint with a time-varying steady-state is designed in each local MPC to guarantee the stabilization of the entire system.The voltage stabilization of the MG is achieved by this strategy with the cooperation of DGs.The numeric results of applying the proposed method to a MG of the Shanghai Power Supply Company shows the effectiveness of the distributed economic MPC.
基金supported by the Science and Technology Project of North China Electric Power Research Institute,which is“Research on Key Technologies for Power Quality Evaluation and Improvement of New Distribution Network Based on Collaborative Interaction of Source-Network-Load-Storage”(KJZ2022016).
文摘The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well.
基金Project supported by the National Basic Research Program (973) of China (No. 2010CB327403)the National Natural Science Foundation of China (Nos. 61001066 and 61102027)
文摘This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP charge model to characterize the bias-dependent extrinsic capacitance instead of numerical functions with strong non-linearity.The simulation convergence is greatly improved by this method.An original scheme is developed to extract the parameters of the PSP charge model based on S-parameters measurement.The interconnection parasitics of the cross-coupled MOSFETs are modeled based on vector fitting.The model is verified with an LC VCO design,and exhibits excellent convergence during simulation.The results show improvements as high as 60.5% and 61.8% in simulation efficiency and accuracy,respectively,indicating that the proposed model better characterizes optimized cross-coupled MOSFETs in advanced radio frequency(RF) circuit design.
文摘In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for critical communication systems with high oscillation frequency. An ideal approach has been presented with substrate biasing technique for reduction of power consumption. The simulation have been completed using cadence virtuoso 45 nm standard CMOS technology at room temperature 27~C with supply voltage Vc^d = 0.7 V. The simulation results suggest that voltage controlled ring oscillator has characterized with efficient low power voltage controlled oscillator (VCO) in term of minimum leakage power (1.23 nW) and maximum oscilla- tion frequency (4.76 GHz) with joint positive channel metal oxide semiconductor and negative channel metal oxide semiconductor (PMOS and NMOS) reverse sub- strate bias technique. PMOS, NMOS and joint reverse body bias techniques have been compared in the presented work.
文摘New voltage-controlled floating inductors employing CFOAs and an analog multiplier have been presented which have the attractive features of using a canonic number of passive components (only two resistors and a capacitor) and not requiring any component-matching conditions and design constraints for the intended type of inductance realization. The workability and applications of the new circuits have been demonstrated by SPICE simulation and hardware experimental results based upon AD844-type CFOAs and AD633-type/MPY534 type analog multipliers.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
基金supported in part by the National Key R&D Program of China(2018YFA0702200)the National Natural Science Foundation of China(62073065,U20A20190)。
文摘The distributed AC microgrid(MG) voltage restoration problem has been extensively studied. Still, many existing secondary voltage control strategies neglect the co-regulation of the voltage at the point of common coupling(PCC) in the AC multi-MG system(MMS). When an MMS consists of sub-MGs connected in series, power flow between the sub-MGs is not possible if the PCC voltage regulation relies on traditional consensus control objectives. In addition, communication faults and sensor faults are inevitable in the MMS. Therefore, a resilient voltage regulation strategy based on containment control is proposed.First, the feedback linearization technique allows us to deal with the nonlinear distributed generation(DG) dynamics, where the PCC regulation problem of an AC MG is transformed into an output feedback tracking problem for a linear multi-agent system(MAS) containing nonlinear dynamics. This process is an indispensable pre-processing in control algorithm design. Moreover, considering the unavailability of full-state measurements and the potential faults present in the sensors, a novel follower observer is designed to handle communication faults. Based on this, a controller based on containment control is designed to achieve voltage regulation. In regulating multiple PCC voltages to a reasonable upper and lower limit, a voltage difference exists between sub-MGs to achieve power flow. In addition, the secondary control algorithm avoids using global information of directed communication network and fault boundaries for communication link and sensor faults. Finally, the simulation results verify the performance of the proposed strategy.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金supported by the National Natural Science Foundation of China(52177081).
文摘In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.
基金Supported by National Basic Research Program of China ("973" Program,No. 2009CB219701 and No. 2010CB234608)Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000)Specialized Research Fund for Doctor Discipline of Ministry of Education of China (No. 20090032110064)
文摘An improved automatic voltage coordination control strategy (AVCCS) based on ;automatic voltage control (AVC) and battery energy storage control (BESC) is proposed for photovoltaic grid-connected system (PVGS) to mitigate the voltage fluctuations caused by environmental disturbances. Only AVC is used when small environ- mental disturbances happen, while BESC is incorporated with AVC to restrain the voltage fluctuations when large disturbances happen. An adjustable parameter determining the allowed amplitudes of voltage fluctuations is introduced to realize the above switching process. A benchmark low voltage distribution system including ]?VGS is established by using the commercial software Dig SILENT. Simulation results show that the voltage under AVCCS satisfies the IEEE Standard 1547, and the installed battery capacity is also reduced. Meanwhile, the battery's service life is ex- tended by avoiding frequent charges/discharges in the control process.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
基金supported by State Grid Corporation of China,Projects under Grant 520626200031National Natural Science Foundation of China,No.51877200。
文摘Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grants 51707079 and 51877093in part by the National Key Research and Development Program of China(Project ID:YS2018YFGH000200)in part by the Fundamental Research Funds for the Central Universities(Project ID:2019kfyXMBZ031).
文摘The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.
基金Project(61166004) supported by the National Natural Science Foundation of ChinaProject(09ZCGHHZ00200) supported by the International Scientific and Technological Cooperation Program of Science and Technology Plan of Tianjin,ChinaProject(UF10028Y)supported by the Doctoral Scientific Research Foundation for Guilin University of Electronic Technology,China
文摘A CMOS active mixer based on voltage control load technique which can operate at 1.0 V supply voltage was proposed, and its operation principle, noise and linearity analysis were also presented. Contrary to the conventional Gilbert-type mixer which is based on RF current-commutating, the load impedance in this proposed mixer is controlled by the LO signal, and it has only two stacked transistors at each branch which is suitable for low voltage applications. The mixer was designed and fabricated in 0.18 tam CMOS process for 2.4 GHz ISM band applications. With an input of 2.44 GHz RF signal and 2.442 GHz LO signal, the measurement specifications of the proposed mixer are: the conversion gain (Gc) is 5.3 dB, the input-referred third-order intercept point (PIIP3) is 4.6 dBm, the input-referred 1 dB compression point (P1dB) is --7.4 dBm, and the single-sideband noise figure (NFSSB) is 21.7 dB.
文摘Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.
文摘As the voltage has local characteristics in a power system, system voltage control has depended on human experts in distribution substation local reactive power control station so far in Korea. Since coordinative automatic control has been possible due to the recent advances in computers and communication networks, the hierarchical voltage control system, consisting of primary, secondary, and tertiary control, has been applied in several European countries. Recently the Korea power system has been operated more closely to stability limits because of rapid growth in load-demand as seen in Europe. For this reasons, Korea electric power corporation recognized the need of the voltage control system and developed the voltage control system. This paper presents an intelligent voltage control system for domestic power system using numerical algorithm based on the sensitivity matrix and the expert system. Dynamic characteristics of the developed system are investigated using EMTDC (electromagnetic transient DC analysis program) and RTDS (real time digital simulator). Several case studies showed the promising performance.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and City University of Hong Kong (No.9380026), China
文摘An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This problem is in fact a global coordination control problem which involves not only sequencing and timing different control devices but also tuning the parameters of controllers. A multi-stage coordinated control scheme is presented, aiming at retaining good voltage levels with minimal control efforts and costs after severe disturbances in power systems. A self-pattem-recognized vaccination procedure is developed to transfer effective heuristic information into the new generation of solution candidates to speed up the convergence of the search procedure to global optima. An example of four bus power system case study is investigated to show the effectiveness and efficiency of the proposed algorithm, compared with several existing approaches such as differential dynamic programming and tree-search.
文摘Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology.PMN-PT,as a single crystal ferroelectric substrate,has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties.However,most of the research based on PMN-PT only studies the influence of a single tensile(or compressive)stress on the magnetic properties due to the asymmetry of strain.In this work,we show the effect of different strains on the magnetic anisotropy of an Fe_(19)Ni_(81)/(011)PMN-PT heterojunction.More importantly,the(011)cut PMN-PT generates non-volatile strain,which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices.As a result,a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain.Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.
基金supported by the Advanced Research Plan of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC015)
文摘The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values of magnetic moment components are critical for the switching effect, which should satisfy a definite condition. The external magnetic field which affects only the oscillation period should be comparable to the internal magnetic field. If the external magnetic field is too small, the switching effect will disappear. The precessions of mx and my are the best for the tilt angle of the external magnetic field θt = 0?, i.e., the field is perpendicular to the sample plane.