Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants ...Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants of the conductor (resistance, conductance, inductance, capacitance). Their resolution makes it possible to determine the variation of the current and the voltage as a function of time at each point of the line. By adopting a general sinusoidal form, we propose a new exact solution to the telegraphers’ partial differential equations. Different simulations have been carried out considering the parameter of the 12/20 (24) kV Medium Voltage Cable NF C 33,220. The curves of the obtained solution better fit the real voltage curves observed in the electrical networks in operation.展开更多
Asynchronous machines are predominantly preferred in industrial sectors for its reliability.Power quality perturbations have a greater impact on industries;among the different power quality events,voltage fluctuations...Asynchronous machines are predominantly preferred in industrial sectors for its reliability.Power quality perturbations have a greater impact on industries;among the different power quality events,voltage fluctuations are the most common and that may cause adverse effect on machine’s operation since they are longer enduring.The article discusses a numerical technique for evaluating asynchronous motors while taking into account magnetic saturation,losses,leakage flux,and voltage drop.A 2D linear analysis involving a multi-slice time stepping finite element model is used to predict the end effects.As an outcome,the magnetic saturation and losses are estimated using amodified 2D nonlinear time-stepping finite element formulation.The method takes the electromagnetic fields at the ends of the motor into account using limited computer resources.The proposed method will greatly reduce computation timewith limited computer resources for analyzing themachine’s performance with high precision.The analyzed findings assist in preventing voltage variance issues in the power network system and provide suggestions for developing a robust system.展开更多
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of ...A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.展开更多
Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate th...Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.展开更多
文摘Telegraph equations are derived from the equations of transmission line theory. They describe the relationships between the currents and voltages on a portion of an electric line as a function of the linear constants of the conductor (resistance, conductance, inductance, capacitance). Their resolution makes it possible to determine the variation of the current and the voltage as a function of time at each point of the line. By adopting a general sinusoidal form, we propose a new exact solution to the telegraphers’ partial differential equations. Different simulations have been carried out considering the parameter of the 12/20 (24) kV Medium Voltage Cable NF C 33,220. The curves of the obtained solution better fit the real voltage curves observed in the electrical networks in operation.
基金This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Asynchronous machines are predominantly preferred in industrial sectors for its reliability.Power quality perturbations have a greater impact on industries;among the different power quality events,voltage fluctuations are the most common and that may cause adverse effect on machine’s operation since they are longer enduring.The article discusses a numerical technique for evaluating asynchronous motors while taking into account magnetic saturation,losses,leakage flux,and voltage drop.A 2D linear analysis involving a multi-slice time stepping finite element model is used to predict the end effects.As an outcome,the magnetic saturation and losses are estimated using amodified 2D nonlinear time-stepping finite element formulation.The method takes the electromagnetic fields at the ends of the motor into account using limited computer resources.The proposed method will greatly reduce computation timewith limited computer resources for analyzing themachine’s performance with high precision.The analyzed findings assist in preventing voltage variance issues in the power network system and provide suggestions for developing a robust system.
基金Supported by the National Natural Science Foundation of China(61604109)the National High-Tech R&D Program of China(2015AA042605)
文摘A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃.
文摘Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.