The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi...The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.展开更多
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some wi...Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.展开更多
Traditional small current grounding system has many advantages. Pilot operation shows that optimized one has even better operation characteristics. It has proven to be a geenrallly properand relatively perfect neutyal...Traditional small current grounding system has many advantages. Pilot operation shows that optimized one has even better operation characteristics. It has proven to be a geenrallly properand relatively perfect neutyal grounding method in urban MV network.展开更多
KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost convert...KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost converter. Such a converter has con- tinuous input and output inductor current, different from the traditional boost con- verter. And hence this converter is very suitable for very low-ripple applications. The Particle Swarm Optimization (PSO) based controller, FUZZY based controller and open loop KY boost converter are designed in MATLAB/Simulink model. The simu- lated results show a reduction in output ripple from 1.18 V of the existing open loop KY boost converter output to 0.54 V in the FUZZY logic controlled converter out- put. Further reduction in output ripple to 0.29 V is achieved in the proposed PSO based converter. The simulated results also show the variation of switching pulses based on the different existing and proposed method.展开更多
An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This pr...An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This problem is in fact a global coordination control problem which involves not only sequencing and timing different control devices but also tuning the parameters of controllers. A multi-stage coordinated control scheme is presented, aiming at retaining good voltage levels with minimal control efforts and costs after severe disturbances in power systems. A self-pattem-recognized vaccination procedure is developed to transfer effective heuristic information into the new generation of solution candidates to speed up the convergence of the search procedure to global optima. An example of four bus power system case study is investigated to show the effectiveness and efficiency of the proposed algorithm, compared with several existing approaches such as differential dynamic programming and tree-search.展开更多
For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing...For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.展开更多
Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated So...Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.展开更多
In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is cl...In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is closely associated with fluctuating load conditions and corresponding requirements of reactive power compensation.The problem of load bus voltage optimization in distribution systems that have distributed generation(DG)has recently become an issue.In Oman,the distribution code limits the load bus voltage variations within±6%of the nominal value.Several voltage control methods are employed in active distribution systems with a high share of photovoltaic systems(PV)to keep the voltage levels within the desirable limits.In addition to the constraint of targeting the best voltage profile,another constraint has to be achieved which is the minimum loss in the distribution network.An optimised solution for voltage of load busses with on-load tap-changing(OLTC)tarnsformers and PV sources is presented in this paper.This study addresses the problem of optimizing the injected power from PV systems associated with the facilities of tap-changing transformers,as it is an important means of controlling voltage throughout the system.To avoid violating tap-changing constraints,a method is depicted for determining the minimal changes in transformer taps to control voltage levels with distributed PV sources.The taps of a range+5 to-15%,can be achieved by tap-changing transformers.The OLTC operation was designed to keep the secondary bus within the voltage standard for MV networks.展开更多
This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wa...This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term,the surface current and the bottom friction coefficient are defined as the analytical variables,and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient.This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves.Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information.The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments.The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.展开更多
Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-insp...Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-inspired algorithms are used to optimally locate two FACTS devices: UPFC and STATCOM, so as to reduce the voltage collapse and real power losses. Particle swarm optimization and BAT algorithms are chosen as their behaviour is similar. VCPI index is used as a metric to calculate the voltage collapse scenario of the power system. The algorithm is tested on two benchmark power systems: IEEE 118 and the Indian UPSEB 75 bus system. Performance metrics are compared with the system without FACTS devices. Application of PSO and BAT algorithms to optimally locate the FACTS devices reduces the VCPI index and real power losses in the system.展开更多
The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to co...The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to compensate the voltage sags under various faults in the grid systems. The SMES is selected as an energy storage unit to improve the capability of voltage sag compensation. Optimized Dual Fuzzy Flow (ODFF) logic controller is designed to prevent the voltage sag time during excessive phase voltage variation. Hence the proposed controller strategy reduces the total harmonic distortion during various fault conditions. To regulate the contribution of active power, the least possible value is improved using ODFF. The depth of voltage sags compensation is achieved by the over modulation and an iterative loop is designed in the control block. While protecting sensitive loads from voltage disturbances, and sags initiated by the power system, the proposed configuration is advantageous for an industrial implementation. It is found that the proposed method can result in more than 50% additional sag support time when compared with the previous methods such as PI and PSO. Utilizing MATLAB Simulink, compensation of sag and minimization of THD is established, and the simulation tests are performed to evaluate the performance of the proposed control method.展开更多
This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal...This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performan...In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performance-oriented optimization techniques have been proposed. However, in order to satisfy the recent trend of power and energy consumptions, power/energy-aware optimization of GPUs needs to be investigated with detailed analysis in addition to the performance-oriented optimization. In this work, in order to explore the impact of various optimization strategies on GPU performance, power and energy consumptions, we evaluate performance and power/energy consumption of a well-known application running on different commercial GPU devices with the different optimization strategies. In particular, in order to see the more generalized performance and power consumption patterns of GPU based accelerations, our evaluations are performed with three different Nvdia GPU generations(Fermi, Kepler and Maxwell architectures), various core clock frequencies and memory clock frequencies. We analyze how a GPU kernel execution is affected by optimization and what GPU architectural factors have much impact on its performance and power/energy consumption. This paper also categorizes which optimization technique primarily improves which metric(i.e., performance, power or energy efficiency). Furthermore, voltage frequency scaling(VFS) is also applied to examine the effect of changing a clock frequency on these metrics. In general, our work shows that effective GPU optimization strategies can improve the application performance significantly without increasing power and energy consumption.展开更多
In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation mo...In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively.展开更多
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for ...Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the reco...This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.展开更多
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB.
基金the National"973"Basic Research Programof China (2004CB318202)
文摘Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results. However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algorithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don’t depend on the number of modes available.
文摘Traditional small current grounding system has many advantages. Pilot operation shows that optimized one has even better operation characteristics. It has proven to be a geenrallly properand relatively perfect neutyal grounding method in urban MV network.
文摘KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost converter. Such a converter has con- tinuous input and output inductor current, different from the traditional boost con- verter. And hence this converter is very suitable for very low-ripple applications. The Particle Swarm Optimization (PSO) based controller, FUZZY based controller and open loop KY boost converter are designed in MATLAB/Simulink model. The simu- lated results show a reduction in output ripple from 1.18 V of the existing open loop KY boost converter output to 0.54 V in the FUZZY logic controlled converter out- put. Further reduction in output ripple to 0.29 V is achieved in the proposed PSO based converter. The simulated results also show the variation of switching pulses based on the different existing and proposed method.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and City University of Hong Kong (No.9380026), China
文摘An immune algorithm solution is proposed in this paper to deal with the problem of optimal coordination of local physically based controllers in order to preserve or retain mid and long term voltage stability. This problem is in fact a global coordination control problem which involves not only sequencing and timing different control devices but also tuning the parameters of controllers. A multi-stage coordinated control scheme is presented, aiming at retaining good voltage levels with minimal control efforts and costs after severe disturbances in power systems. A self-pattem-recognized vaccination procedure is developed to transfer effective heuristic information into the new generation of solution candidates to speed up the convergence of the search procedure to global optima. An example of four bus power system case study is investigated to show the effectiveness and efficiency of the proposed algorithm, compared with several existing approaches such as differential dynamic programming and tree-search.
基金The Science Foundation of State Grid Xinjiang(No.SGTYHT/19-JS-215)。
文摘For dealing with the resonance fault of ultra-high voltage transformers(UHVTs)with the parallel thyristor controlled reactor(TCR)+the filter compensator(FC)type static var compensator(SVC)caused by dc magnetic biasing,a simulation model of UHVT with parallel SVC for the frequency analysis of the impedance characteristics and a magnetic-field coupling model for UHVT based on classic Jiles-Atherton hysteresis theories are constructed based on the MATLAB/Simulink platform.Both the theoretical and simulation results prove that the resonance fault is caused by the resonance point on the low-voltage side of the transformer,which will approach the 4th harmonic point under magnetic biasing.Based on the fault analysis,a new resonance control method is proposed by adding reactance with by-pass switches in series with FC branches.Under dc magnetic biasing,the cutoff of the by-pass switch will increase the series reactance rate of the FC branches and change the resonance point.In order to avoid the 7th harmonic increasement caused by this method,the firing angle of the TCR branches is locked between 130°and 180°.The effect of the proposed method is validated by the simulation model of a 750 kV UHVT and the results show that the mechanism analysis of the resonance fault is correct and the resonance control method is valid.
文摘Voltage stability has become an important issue in planning and operation of many power systems. This work includes multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as well as improvement of voltage profile in the system. NSGA-II based OPF-case 1-Two objective-Min Fuel cost and Voltage stability index;case 2-Three objective-Min Fuel cost, Min Emission cost and Voltage stability index. The above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two severe contingency cases and also on loaded conditions.
文摘In distribution systems,voltage levels of the various buses should be maintained within the permissible limits for satisfactory operation of all electrical installations and equipment.The task of voltage control is closely associated with fluctuating load conditions and corresponding requirements of reactive power compensation.The problem of load bus voltage optimization in distribution systems that have distributed generation(DG)has recently become an issue.In Oman,the distribution code limits the load bus voltage variations within±6%of the nominal value.Several voltage control methods are employed in active distribution systems with a high share of photovoltaic systems(PV)to keep the voltage levels within the desirable limits.In addition to the constraint of targeting the best voltage profile,another constraint has to be achieved which is the minimum loss in the distribution network.An optimised solution for voltage of load busses with on-load tap-changing(OLTC)tarnsformers and PV sources is presented in this paper.This study addresses the problem of optimizing the injected power from PV systems associated with the facilities of tap-changing transformers,as it is an important means of controlling voltage throughout the system.To avoid violating tap-changing constraints,a method is depicted for determining the minimal changes in transformer taps to control voltage levels with distributed PV sources.The taps of a range+5 to-15%,can be achieved by tap-changing transformers.The OLTC operation was designed to keep the secondary bus within the voltage standard for MV networks.
基金supported by the National Natural Science Foundation of China (Nos. 41506039, 41776004, 41775100 and 41606039)the National Key Research and Development Program of China (No. 2016YFC1401800)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2016B12514)the National Programme on Global Change and Air-Sea Interaction of China (No. GASI-IPO VAI-04)
文摘This paper proposes a new method for data assimilation of the surface radial current observed by High Frequency ground wave radar and optimization of the bottom friction coefficient.In this method,the shallow water wave equation is introduced into the cost function of the multigrid three-dimensional variation data assimilation method as the weak constraint term,the surface current and the bottom friction coefficient are defined as the analytical variables,and the high spatiotemporal resolution surface radial flow observed by the high-frequency ground wave radar is used to optimize the surface current and bottom friction coefficient.This method can effectively consider the spatiotemporal correlation of radar data and extract multiscale information from surface radial flow data from long waves to short waves.Introducing the shallow water wave equation into the cost function as a weak constraint condition can adjust both the momentum and mass fields simultaneously to obtain more reasonable analysis information.The optimized bottom friction coefficient is introduced into the regional ocean numerical model to carry out numerical experiments.The test results show that the bottom friction coefficient obtained by this method can effectively improve the accuracy of the numerical simulation of sea surface height in the offshore area and reduce the simulation error.
文摘Power system operations can be optimized using power electronics based FACTS devices. The location of these devices at appropriate transmission line plays a major role in their performance. In this paper, two bio-inspired algorithms are used to optimally locate two FACTS devices: UPFC and STATCOM, so as to reduce the voltage collapse and real power losses. Particle swarm optimization and BAT algorithms are chosen as their behaviour is similar. VCPI index is used as a metric to calculate the voltage collapse scenario of the power system. The algorithm is tested on two benchmark power systems: IEEE 118 and the Indian UPSEB 75 bus system. Performance metrics are compared with the system without FACTS devices. Application of PSO and BAT algorithms to optimally locate the FACTS devices reduces the VCPI index and real power losses in the system.
文摘The booming electronics itself carries an impact on power quality. Superconducting Magnetic Energy Storage (SMES) is proposed to enhance power quality in three-phase systems under various loads. This paper aimed to compensate the voltage sags under various faults in the grid systems. The SMES is selected as an energy storage unit to improve the capability of voltage sag compensation. Optimized Dual Fuzzy Flow (ODFF) logic controller is designed to prevent the voltage sag time during excessive phase voltage variation. Hence the proposed controller strategy reduces the total harmonic distortion during various fault conditions. To regulate the contribution of active power, the least possible value is improved using ODFF. The depth of voltage sags compensation is achieved by the over modulation and an iterative loop is designed in the control block. While protecting sensitive loads from voltage disturbances, and sags initiated by the power system, the proposed configuration is advantageous for an industrial implementation. It is found that the proposed method can result in more than 50% additional sag support time when compared with the previous methods such as PI and PSO. Utilizing MATLAB Simulink, compensation of sag and minimization of THD is established, and the simulation tests are performed to evaluate the performance of the proposed control method.
文摘This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by Basic Science Research Program through the National Research Foundation(2015R1D1A3A01019869),Korea
文摘In the era of modern high performance computing, GPUs have been considered an excellent accelerator for general purpose data-intensive parallel applications. To achieve application speedup from GPUs, many of performance-oriented optimization techniques have been proposed. However, in order to satisfy the recent trend of power and energy consumptions, power/energy-aware optimization of GPUs needs to be investigated with detailed analysis in addition to the performance-oriented optimization. In this work, in order to explore the impact of various optimization strategies on GPU performance, power and energy consumptions, we evaluate performance and power/energy consumption of a well-known application running on different commercial GPU devices with the different optimization strategies. In particular, in order to see the more generalized performance and power consumption patterns of GPU based accelerations, our evaluations are performed with three different Nvdia GPU generations(Fermi, Kepler and Maxwell architectures), various core clock frequencies and memory clock frequencies. We analyze how a GPU kernel execution is affected by optimization and what GPU architectural factors have much impact on its performance and power/energy consumption. This paper also categorizes which optimization technique primarily improves which metric(i.e., performance, power or energy efficiency). Furthermore, voltage frequency scaling(VFS) is also applied to examine the effect of changing a clock frequency on these metrics. In general, our work shows that effective GPU optimization strategies can improve the application performance significantly without increasing power and energy consumption.
基金Project(20050079008) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘In China, economic centers are far from energy storage bases, so it is significant to select a proper energy transferring mode to improve the efficiency of energy usage. To solve this problem, an optimal allocation model based on energy transfer mode was proposed after objective function for optimizing energy using efficiency was established, and then, a new Tabu search and particle swarm hybrid optimizing algorithm was proposed to find solutions. While actual data of energy demand and distribution in China were selected for analysis, the economic critical value in comparison between the long-distance coal transfer and electric power transmission was gained. Based on the above discussion, some proposals were put forward for optimal allocation of energy transfer modes in China. By comparing other three traditional methods that are based on regional price differences, freight rates and annual cost with the proposed method, the result indicates that the economic efficiency of the energy transfer can be enhanced by 3.14%, 5.78% and 6.01%, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41705082, 41475101, 41690122(41690120))a Chinese Academy of Sciences Strategic Priority Project-the Western Pacific Ocean System (Grant Nos. XDA11010105 and XDA11020306)+1 种基金the National Programme on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-01-01)the China Postdoctoral Science Foundation, and a Qingdao Postdoctoral Application Research Project
文摘Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
基金the deanship of Scientific Research at Jouf University for founding this work through research grant no(DSR2020-02-387).https://www.ju.edu.sa/.
文摘This paper presents a new optimization study of the placement and size of a photovoltaic source(PVS)in a distribution grid,based on annual records of meteorological parameters(irradiance,temperature).Based on the recorded data,the production output as well as the daily average power(24-h vector)of the PVS is extracted over the year.When a power vector is available,it can be used as an input when searching for the optimal size of the PVS.This allows to take into account the constraint of the variation of the power generated by this source considering the variation of the power consumed by the electrical loads during the whole day.A multi-objective fitness function has been considered.The latter minimizes the active losses and maximizes the voltage stability index during the day,while considering the constraints of the system,that is,the security,technical,geographical,and meteorological constraints.This problem was solved using the Non-dominated Sorting Genetic Algorithm NSGA-II optimization technique under MATLAB 2021.It was applied to the distribution network of Ghardaïa of 59 nodes.