The recent evolution of active components yielded brilliant progresses for organic solar cells(OSCs),yet the mechanism is needed to be clearly understood.In this wo rk,two electron acceptors,a linear SN6-2Br and a V-s...The recent evolution of active components yielded brilliant progresses for organic solar cells(OSCs),yet the mechanism is needed to be clearly understood.In this wo rk,two electron acceptors,a linear SN6-2Br and a V-shaped BTP-2Br,are developed with nitrogen atoms introduced to replace the traditional sp3-hybridized carbon in the fused ring.BTP-2Br possesses an electron-de ficient central core,which exhibits slightly blue-shifted absorption as well as deepened HOMO-level compared with SN6-2Br.The corresponding photovoltaic performance from V-shaped BTP-2Br based devices exhibit superior performance especially in short-circuit current(Jsc),despite an enhanced absorption and charge carrier mobilities for SN6-2Br.The primary reason for the higher JSC from BTP-2Br is faster exciton diffusion and dissociation in ble nds,than those of SN6-2Br.As a result,PBDB-TF:BTP-2Br based devices achieve a power conversion efficiency(PCE)of 13.84%with an voltage-loss of only 0.46 V,which is one of the lowest values ever reported.Moreover,we fabricated semitransparent OSCs that exhibit an excellent PCE of 9.62%with average visible transparency of 20.1%.展开更多
基金National Natural Science Foundation of China(Nos.21722404,21674093 and 21734008)International Science and Technology Cooperation Program of China(ISTCP)(No.2016YFE0102900)+3 种基金supported by the Fundamental Research Funds for the Central Universities(No.2018XZZX002-16)the support by Zhejiang Natural Science Fund for Distinguished Young Scholars(No.LR17E030001)the support by the China Postdoctoral Science Foundation Funded Project(No.2018M632448)Postdoctoral Science Foundation Funded Project of Zhejiang Province(No.zj2017131)。
文摘The recent evolution of active components yielded brilliant progresses for organic solar cells(OSCs),yet the mechanism is needed to be clearly understood.In this wo rk,two electron acceptors,a linear SN6-2Br and a V-shaped BTP-2Br,are developed with nitrogen atoms introduced to replace the traditional sp3-hybridized carbon in the fused ring.BTP-2Br possesses an electron-de ficient central core,which exhibits slightly blue-shifted absorption as well as deepened HOMO-level compared with SN6-2Br.The corresponding photovoltaic performance from V-shaped BTP-2Br based devices exhibit superior performance especially in short-circuit current(Jsc),despite an enhanced absorption and charge carrier mobilities for SN6-2Br.The primary reason for the higher JSC from BTP-2Br is faster exciton diffusion and dissociation in ble nds,than those of SN6-2Br.As a result,PBDB-TF:BTP-2Br based devices achieve a power conversion efficiency(PCE)of 13.84%with an voltage-loss of only 0.46 V,which is one of the lowest values ever reported.Moreover,we fabricated semitransparent OSCs that exhibit an excellent PCE of 9.62%with average visible transparency of 20.1%.