Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour...Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identifica...BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identification of upper and lower GIB and in the prompt treatment of the haemorrhage.AIM To determine whether a volumetric estimation of the extravasated contrast at CTA in GIB may be a predictor of subsequent positive angiographic findings.METHODS In this retrospective single-centre study,35 patients(22 men;median age 69 years;range 16-92 years)admitted to our institution for active GIB detected at CTA and further submitted to catheter angiography between January 2018 and February 2022 were enrolled.Twenty-three(65.7%)patients underwent endoscopy before CTA.Bleeding volumetry was evaluated in both arterial and venous phases via a semi-automated dedicated software.Bleeding rate was obtained from volume change between the two phases and standardised for unit time.Patients were divided into two groups,according to the angiographic signs and their concordance with CTA.RESULTS Upper bleeding accounted for 42.9%and lower GIB for 57.1%.Mean haemoglobin value at the admission was 7.7 g/dL.A concordance between positive CTA and direct angiographic bleeding signs was found in 19(54.3%)cases.Despite no significant differences in terms of bleeding volume in the arterial phase(0.55 mL vs 0.33 mL,P=0.35),a statistically significant volume increase in the venous phase was identified in the group of patients with positive angiography(2.06 mL vs 0.9 mL,P=0.02).In the latter patient group,a significant increase in bleeding rate was also detected(2.18 mL/min vs 0.19 mL/min,P=0.02).CONCLUSION In GIB of any origin,extravasated contrast volumetric analysis at CTA could be a predictor of positive angiography and may help in avoiding further unnecessary procedures.展开更多
·AIM:To evaluate visual outcomes and changes in fluid after administering monthly anti-vascular endothelial growth factor(VEGF)injections to treat neovascular agerelated macular degeneration(n AMD)with subretinal...·AIM:To evaluate visual outcomes and changes in fluid after administering monthly anti-vascular endothelial growth factor(VEGF)injections to treat neovascular agerelated macular degeneration(n AMD)with subretinal fluid(SRF)and pigment epithelial detachment(PED).·METHODS:This prospective study included eyes with n AMD previously treated with as-needed anti-VEGF injections.The patients were treated with six monthly intravitreal injections of ranibizumab.Quantitative volumetric segmentation analyses of the SRF and PED were performed.The main outcome measures included best-corrected visual acuity(BCVA),and SRF and PED volumes.·RESULTS:Twenty eyes of 20 patients were included in this study.At the 6-month follow-up,BCVA and PED volume did not change significantly(P=0.110 and 0.999,respectively)but the mean SRF volume decreased from 0.53±0.82 mm3 at baseline to 0.08±0.23 mm3(P=0.002).The absorption rate of the SRF volume was negatively correlated with the duration of previous antiVEGF treatment(P=0.029).Seven of the 20 eyes(35%)showed a fluid-free macula and significant improvement in BCVA(P=0.036)by month 6.·CONCLUSION:Quantifying the SRF can precisely determine the patient’s responsiveness to anti-VEGF treatment of n AMD.展开更多
Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge pot...Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge potential.However,growing binder-free Si NW anodes with adequate mass loading and stable capacity is severely limited by the low surface area of planar current collectors(CCs),and is particularly challenging to achieve on standard pure-Cu substrates due to the ubiquitous formation of Li+inactive silicide phases.Here,the growth of densely-interwoven In-seeded Si NWs is facilitated by a thin-film of copper-silicide(CS)network in situ grown on a Cu-foil,allowing for a thin active NW layer(<10μm thick)and high areal loading(≈1.04 mg/cm^(2))binder-free electrode architecture.The electrode exhibits an average Coulombic efficiency(CE)of>99.6%and stable performance for>900 cycles with≈88.7%capacity retention.More significantly,it delivers a volumetric capacity of≈1086.1 m A h/cm^(3)at 5C.The full-cell versus lithium manganese oxide(LMO)cathode delivers a capacity of≈1177.1 m A h/g at 1C with a stable rate capability.This electrode architecture represents significant advances toward the development of binder-free Si NW electrodes for LIB application.展开更多
Lattice structures with excellent physical properties have attracted great research interest.In this paper,a novel volume parametric modeling method based on the skeleton model is proposed for the construction of thre...Lattice structures with excellent physical properties have attracted great research interest.In this paper,a novel volume parametric modeling method based on the skeleton model is proposed for the construction of threedimensional lattice structures.The skeleton model is divided into three types of nodes.And the corresponding algorithms are utilized to construct diverse types of volume parametric nodes.The unit-cell is assembled with distinct nodes according to the geometric features.The final lattice structure is created by the periodic arrangement of unit-cells.Several different types of volume parametric lattice structures are constructed to prove the stability and applicability of the proposed method.The quality is assessed in terms of the value of the Jacobian matrix.Moreover,the volume parametric lattice structures are tested with the isogeometric analysis to verify the feasibility of integration of modeling and simulation.展开更多
Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imagi...Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imaging with the advantage of single-shot.To address the inherent limits including nonuniform resolution and block-wise artifacts,various modied LFM strategies have been developed to provide new insights into the structural and functional information of cells.This review will introduce the principle and development of LFM,discuss the improved approaches based on hardware designs and 3D reconstruction algorithms,and present the applications in single-cell imaging.展开更多
Background:Closure of an atrial septal defect(ASD)reduces right-side heart volumes by abolishing shunting with simultaneous improvement of the left ventricle(LV)filling and functions due to ventricular interdependence,...Background:Closure of an atrial septal defect(ASD)reduces right-side heart volumes by abolishing shunting with simultaneous improvement of the left ventricle(LV)filling and functions due to ventricular interdependence,thereby improving symptoms.Furthermore,studies conducted on atrial volume changes after ASD closure are limited.Cardiac magnetic resonance(CMR)is considered as the gold standard method for measuring cardiac volume and mass.Objective:We aimed to study the effect of transcatheter and surgical closure of secundum ASD on cardiac volumes and systolic functions as well as the fate of tricuspid regurgitation(TR),using CMR analysis.Methods:We prospectively enrolled 30 adult patients with isolated secundum ASD who were referred to ASD closure.CMR evaluation of cardiac chambers indexed volumes,systolic function,myocardial mass index,and tricuspid regurgitant fraction were done at before and 6 months after closure.Results:RV volumes decreased in both groups when compared to baseline(p-value 0.001),the device group had more reduction in volumes and more improvement in RV function after closure(p-value 0.001)when compared to the surgical arm.The changes in the RV mass index were insignificant between both groups(p-value 0.31).Functional TR improved to the same extent in both groups.Left ventricular end diastolic volume index(LVEDVI)and LV mass index increased sig-nificantly in both groups when compared to baseline in both groups but with no difference between groups p-value 0.01),left ventricular end systolic volume index(LVESVI)changes were insignificant.LV systolic function improved in patients who underwent device closure only(63.53±3.85 vs.67.13±4.34,p-value 0.01).There was a significant reduction in right atrial(RA)volumes and an insignificant decrease in left atrial(LA)volumes,with no difference between groups.Conclusion:Transcatheter and surgical secundum ASD closure resulted in volumetric changes in some cardiac chambers with better improvement in bi-ventricular systolic function in the transcatheter arm and no difference in the TR reduction between the two groups at 6 months follow-up by CMR.展开更多
Objective:To carry out dosimetric comparison between volumetric modulated arc therapy(VMAT)and intensity-modulated radiation therapy(IMRT)in cervical cancer.Methods:50 postoperative cervical cancer patients were inclu...Objective:To carry out dosimetric comparison between volumetric modulated arc therapy(VMAT)and intensity-modulated radiation therapy(IMRT)in cervical cancer.Methods:50 postoperative cervical cancer patients were included in this study.The patients were admitted for treatment from January 2021 to January 2022.VMAT and IMRT plans were designed for each patient to analyze the dose distribution in the target area of the two treatment techniques.Results:Comparing the monitor unit for single treatment(638.21±116.21 MU)and time of single treatment(143.21±23.14 s)in the observation group and the monitor unit for single treatment(932.14±74.11 MU)and time of single treatment(223.14±17.26 s)in the control group,there was significant difference(P<0.05);there was also significant difference(P<0.05)between the normal tissue(bladder and rectum)of the observation group and that(bladder and rectum)of the control group.Conclusion:VMAT is more effective in cervical cancer,and it has a certain protective effect on normal tissues in patients and can reduce the radiation dose.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC ...AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning sys- tem: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (gF), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the plan-ning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normal- ized to 95% of the PTV that received 100% of the pre- scribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different Io- cations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1,1 and 2A 1.09), Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and Vl0) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especial- ly the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.展开更多
It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy s...It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy storage applications.Herein,MXene/Co Al-LDH heterostructure has been prepared through electrostatic ordered hetero-assembly of monolayer MXene and edge-rich Co Al-LDH nanosheets in a faceto-face manner on molecular-scale for supercapacitor applications.Benefiting from the unique structure,strong interfacial interaction and synergistic effects between MXene and Co Al-LDH nanosheets,the electrical conductivity and exposed electrolyte-accessible active sites are significantly enhanced.The asprepared MXene/Co Al-LDH-80%(ML-80)film exhibits high volumetric capacity of 2472 C cm-3 in 3 M KOH electrolyte with high rate capability of 70.6%at 20 A g-1.Notably,to the best of our knowledge,the high volumetric capacity is the highest among other previously reported values for supercapacitors in aqueous electrolytes.Furthermore,our asymmetric supercapacitor device fabricated with ML-80 and MXene/graphene composite as cathode and anode,respectively,exhibits impressive volumetric energy density of 85.4 Wh L-1 with impressive cycling stability of 94.4%retention ratio after 30,000 continuous charge/discharge cycles.展开更多
To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permi...To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas.展开更多
Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 p...Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 patients of locally advanced NPC were selected randomly. The plans were managed using volumetric modulated arc with RapidArc and fixed nine-field coplanar dynamic intensity-modulated radiotherapy (IMRT) for these patients. The dosimetry of the planning target volumes (PTV), the organs at risk (OARs) and the healthy tissue were evaluated. The dose prescription was set to 70 Gy to the primary tumor and 60 Gy to the clinical target volumes (CTV) in 33 fractions. Each fraction applied daily, five fractions per week. The monitor unit (MU) values and the delivery time were scored to evaluate the expected treatment efficiency. Results: Both techniques had reached clinical treatment’s requirement. The mean dose (Dmean), maximum dose (Dmax) and minimum dose (Dmin) in RapidArc and fixed field IMRT for PTV were 68.4±0.6 Gy, 74.8±0.9 Gy and 56.8±1.1 Gy; and 67.6±0.6 Gy, 73.8±0.4 Gy and 57.5±0.6 Gy (P<0.05), respectively. Homogeneity index was 78.85±1.29 in RapidArc and 80.34±0.54 (P<0.05) in IMRT. The conformity index (CI: 95%) was 0.78±0.01 for both techniques (P>0.05). Compared to IMRT, RapidArc allowed a reduction of Dmean to the brain stem, mandible and optic nerves of 14.1% (P<0.05), 5.6% (P<0.05) and 12.2% (P<0.05), respectively. For the healthy tissue and the whole absorbed dose, Dmean of RapidArc was reduced by 3.6% (P<0.05), and 3.7% (P<0.05), respectively. The Dmean to the parotids, the spinal cord and the lens had no statistical difference among them. The mean MU values of RapidArc and IMRT were 550 and 1,379. The mean treatment time of RapidArc and IMRT was 165 s and 447 s. Compared to IMRT, the delivery time and the MU values of RapidArc were reduced by 63% and 60%, respectively. Conclusion: For locally advanced NPC, both RapidArc and IMRT reached the clinic requirement. The target volume coverage was similar for the different techniques. The RapidArc technique showed some improvements in OARs and other tissue sparing while using reduced MUs and delivery time.展开更多
Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system whi...Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.展开更多
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A...The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.展开更多
AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT ...AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT and 42 VMAT). Dose were 63.8 Gy(HT) and 63.2 Gy(VMAT) in the tumour bed, 52.2 Gy in the breast, 50.4 Gy in supraclavicular nodes(SCN) and internal mammary chain(IMC) with HT and 52.2 Gy and 49.3 Gy in IMC and SCN with VMAT in 29 fractions. Margins to particle tracking velocimetry were greater in the VMAT cohort(7 mm vs 5 mm).RESULTS For the HT cohort, the coverage of clinical target volumes was as follows: Tumour bed: 99.4% ± 2.4%; breast: 98.4% ± 4.3%; SCN: 99.5% ± 1.2%; IMC:96.5% ± 13.9%. For the VMAT cohort, the coverage was as follows: Tumour bed: 99.7% ± 0.5%, breast: 99.3% ± 0.7%; SCN: 99.6% ± 1.4%; IMC: 99.3% ± 3%. For ipsilateral lung, Dmean and V20 were 13.6 ± 1.2 Gy, 21.1% ± 5%(HT) and 13.6 ± 1.4 Gy, 20.1% ± 3.2%(VMAT). Dmean and V30 of the heart were 7.4 ± 1.4 Gy, 1% ± 1%(HT) and 10.3 ± 4.2 Gy, 2.5% ± 3.9%(VMAT). For controlateral breast Dmean was 3.6 ± 0.2 Gy(HT) and 4.6 ± 0.9 Gy(VMAT). Acute skin toxicity grade 3 was 5% in the two cohorts.CONCLUSION HT and VMAT in complex adjuvant breast irradiation allow a good coverage of target volumes with an acceptable acute tolerance. A longer follow-up is needed to assess the impact of low doses to healthy tissues.展开更多
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金This work is supported by National Natural Science Foundation of China(Nos.U23B20151 and 52171253).
文摘Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
文摘BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identification of upper and lower GIB and in the prompt treatment of the haemorrhage.AIM To determine whether a volumetric estimation of the extravasated contrast at CTA in GIB may be a predictor of subsequent positive angiographic findings.METHODS In this retrospective single-centre study,35 patients(22 men;median age 69 years;range 16-92 years)admitted to our institution for active GIB detected at CTA and further submitted to catheter angiography between January 2018 and February 2022 were enrolled.Twenty-three(65.7%)patients underwent endoscopy before CTA.Bleeding volumetry was evaluated in both arterial and venous phases via a semi-automated dedicated software.Bleeding rate was obtained from volume change between the two phases and standardised for unit time.Patients were divided into two groups,according to the angiographic signs and their concordance with CTA.RESULTS Upper bleeding accounted for 42.9%and lower GIB for 57.1%.Mean haemoglobin value at the admission was 7.7 g/dL.A concordance between positive CTA and direct angiographic bleeding signs was found in 19(54.3%)cases.Despite no significant differences in terms of bleeding volume in the arterial phase(0.55 mL vs 0.33 mL,P=0.35),a statistically significant volume increase in the venous phase was identified in the group of patients with positive angiography(2.06 mL vs 0.9 mL,P=0.02).In the latter patient group,a significant increase in bleeding rate was also detected(2.18 mL/min vs 0.19 mL/min,P=0.02).CONCLUSION In GIB of any origin,extravasated contrast volumetric analysis at CTA could be a predictor of positive angiography and may help in avoiding further unnecessary procedures.
文摘·AIM:To evaluate visual outcomes and changes in fluid after administering monthly anti-vascular endothelial growth factor(VEGF)injections to treat neovascular agerelated macular degeneration(n AMD)with subretinal fluid(SRF)and pigment epithelial detachment(PED).·METHODS:This prospective study included eyes with n AMD previously treated with as-needed anti-VEGF injections.The patients were treated with six monthly intravitreal injections of ranibizumab.Quantitative volumetric segmentation analyses of the SRF and PED were performed.The main outcome measures included best-corrected visual acuity(BCVA),and SRF and PED volumes.·RESULTS:Twenty eyes of 20 patients were included in this study.At the 6-month follow-up,BCVA and PED volume did not change significantly(P=0.110 and 0.999,respectively)but the mean SRF volume decreased from 0.53±0.82 mm3 at baseline to 0.08±0.23 mm3(P=0.002).The absorption rate of the SRF volume was negatively correlated with the duration of previous antiVEGF treatment(P=0.029).Seven of the 20 eyes(35%)showed a fluid-free macula and significant improvement in BCVA(P=0.036)by month 6.·CONCLUSION:Quantifying the SRF can precisely determine the patient’s responsiveness to anti-VEGF treatment of n AMD.
基金funded by the Science Foundation Ireland (SFI)under the Principal Investigator Program under contract No.11PI-1148,16/IA/4629 and SFI 16/M-ERA/3419funding under the European Union’s Horizon 2020 Research and Innovation Program+7 种基金grant agreement No.814464 (Si-DRIVE project)IRCLA/2017/285 and SFI Research Centres AMBER,Ma REI and CONFIRM 12/RC/2302_P2,12/RC/2278_P2,and 16/RC/3918SFI for SIRG grant No.18/SIRG/5484support from the Sustainable Energy Authority of Ireland through the Research Development and Demonstration Funding Program (Grant No.19/RDD/548)Enterprise Ireland through the Innovation Partnership Program (Grant No.IP 20190910)support from the SFI Research Centre Ma REI (award reference No.12/RC/2302_P2)support from the SFI Industry RD&I Fellowship Program (21/IRDIF/9876)the EU Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Individual Fellowship Grant (843621)。
文摘Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge potential.However,growing binder-free Si NW anodes with adequate mass loading and stable capacity is severely limited by the low surface area of planar current collectors(CCs),and is particularly challenging to achieve on standard pure-Cu substrates due to the ubiquitous formation of Li+inactive silicide phases.Here,the growth of densely-interwoven In-seeded Si NWs is facilitated by a thin-film of copper-silicide(CS)network in situ grown on a Cu-foil,allowing for a thin active NW layer(<10μm thick)and high areal loading(≈1.04 mg/cm^(2))binder-free electrode architecture.The electrode exhibits an average Coulombic efficiency(CE)of>99.6%and stable performance for>900 cycles with≈88.7%capacity retention.More significantly,it delivers a volumetric capacity of≈1086.1 m A h/cm^(3)at 5C.The full-cell versus lithium manganese oxide(LMO)cathode delivers a capacity of≈1177.1 m A h/g at 1C with a stable rate capability.This electrode architecture represents significant advances toward the development of binder-free Si NW electrodes for LIB application.
基金supported by the National Nature Science Foundation of China under Grant No.52075340.
文摘Lattice structures with excellent physical properties have attracted great research interest.In this paper,a novel volume parametric modeling method based on the skeleton model is proposed for the construction of threedimensional lattice structures.The skeleton model is divided into three types of nodes.And the corresponding algorithms are utilized to construct diverse types of volume parametric nodes.The unit-cell is assembled with distinct nodes according to the geometric features.The final lattice structure is created by the periodic arrangement of unit-cells.Several different types of volume parametric lattice structures are constructed to prove the stability and applicability of the proposed method.The quality is assessed in terms of the value of the Jacobian matrix.Moreover,the volume parametric lattice structures are tested with the isogeometric analysis to verify the feasibility of integration of modeling and simulation.
基金This paper was supported by Shenzhen Science and Technology Innovation grants(JCYJ20200109115633343,JCYJ20210324123610030).
文摘Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imaging with the advantage of single-shot.To address the inherent limits including nonuniform resolution and block-wise artifacts,various modied LFM strategies have been developed to provide new insights into the structural and functional information of cells.This review will introduce the principle and development of LFM,discuss the improved approaches based on hardware designs and 3D reconstruction algorithms,and present the applications in single-cell imaging.
文摘Background:Closure of an atrial septal defect(ASD)reduces right-side heart volumes by abolishing shunting with simultaneous improvement of the left ventricle(LV)filling and functions due to ventricular interdependence,thereby improving symptoms.Furthermore,studies conducted on atrial volume changes after ASD closure are limited.Cardiac magnetic resonance(CMR)is considered as the gold standard method for measuring cardiac volume and mass.Objective:We aimed to study the effect of transcatheter and surgical closure of secundum ASD on cardiac volumes and systolic functions as well as the fate of tricuspid regurgitation(TR),using CMR analysis.Methods:We prospectively enrolled 30 adult patients with isolated secundum ASD who were referred to ASD closure.CMR evaluation of cardiac chambers indexed volumes,systolic function,myocardial mass index,and tricuspid regurgitant fraction were done at before and 6 months after closure.Results:RV volumes decreased in both groups when compared to baseline(p-value 0.001),the device group had more reduction in volumes and more improvement in RV function after closure(p-value 0.001)when compared to the surgical arm.The changes in the RV mass index were insignificant between both groups(p-value 0.31).Functional TR improved to the same extent in both groups.Left ventricular end diastolic volume index(LVEDVI)and LV mass index increased sig-nificantly in both groups when compared to baseline in both groups but with no difference between groups p-value 0.01),left ventricular end systolic volume index(LVESVI)changes were insignificant.LV systolic function improved in patients who underwent device closure only(63.53±3.85 vs.67.13±4.34,p-value 0.01).There was a significant reduction in right atrial(RA)volumes and an insignificant decrease in left atrial(LA)volumes,with no difference between groups.Conclusion:Transcatheter and surgical secundum ASD closure resulted in volumetric changes in some cardiac chambers with better improvement in bi-ventricular systolic function in the transcatheter arm and no difference in the TR reduction between the two groups at 6 months follow-up by CMR.
文摘Objective:To carry out dosimetric comparison between volumetric modulated arc therapy(VMAT)and intensity-modulated radiation therapy(IMRT)in cervical cancer.Methods:50 postoperative cervical cancer patients were included in this study.The patients were admitted for treatment from January 2021 to January 2022.VMAT and IMRT plans were designed for each patient to analyze the dose distribution in the target area of the two treatment techniques.Results:Comparing the monitor unit for single treatment(638.21±116.21 MU)and time of single treatment(143.21±23.14 s)in the observation group and the monitor unit for single treatment(932.14±74.11 MU)and time of single treatment(223.14±17.26 s)in the control group,there was significant difference(P<0.05);there was also significant difference(P<0.05)between the normal tissue(bladder and rectum)of the observation group and that(bladder and rectum)of the control group.Conclusion:VMAT is more effective in cervical cancer,and it has a certain protective effect on normal tissues in patients and can reduce the radiation dose.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
基金Supported by The National Natural Science Foundation of China, No. 30870738
文摘AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning sys- tem: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (gF), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the plan-ning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normal- ized to 95% of the PTV that received 100% of the pre- scribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different Io- cations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1,1 and 2A 1.09), Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and Vl0) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especial- ly the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
基金supported by the financial support from the National Natural Science Foundation of China(21571040)the Young Top-Notch Talent of National Ten Thousand Talent Program+1 种基金Heilongjiang Touyan Innovation Team ProgramFundamental Research Funds for the Central Universities。
文摘It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy storage applications.Herein,MXene/Co Al-LDH heterostructure has been prepared through electrostatic ordered hetero-assembly of monolayer MXene and edge-rich Co Al-LDH nanosheets in a faceto-face manner on molecular-scale for supercapacitor applications.Benefiting from the unique structure,strong interfacial interaction and synergistic effects between MXene and Co Al-LDH nanosheets,the electrical conductivity and exposed electrolyte-accessible active sites are significantly enhanced.The asprepared MXene/Co Al-LDH-80%(ML-80)film exhibits high volumetric capacity of 2472 C cm-3 in 3 M KOH electrolyte with high rate capability of 70.6%at 20 A g-1.Notably,to the best of our knowledge,the high volumetric capacity is the highest among other previously reported values for supercapacitors in aqueous electrolytes.Furthermore,our asymmetric supercapacitor device fabricated with ML-80 and MXene/graphene composite as cathode and anode,respectively,exhibits impressive volumetric energy density of 85.4 Wh L-1 with impressive cycling stability of 94.4%retention ratio after 30,000 continuous charge/discharge cycles.
基金funded by the Geological Survey Project of the China Geological Survey (grants No. DD20189614, DD20160173)the National Science Foundation of China (grants No. 41702204, 41402120)
文摘To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas.
文摘Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 patients of locally advanced NPC were selected randomly. The plans were managed using volumetric modulated arc with RapidArc and fixed nine-field coplanar dynamic intensity-modulated radiotherapy (IMRT) for these patients. The dosimetry of the planning target volumes (PTV), the organs at risk (OARs) and the healthy tissue were evaluated. The dose prescription was set to 70 Gy to the primary tumor and 60 Gy to the clinical target volumes (CTV) in 33 fractions. Each fraction applied daily, five fractions per week. The monitor unit (MU) values and the delivery time were scored to evaluate the expected treatment efficiency. Results: Both techniques had reached clinical treatment’s requirement. The mean dose (Dmean), maximum dose (Dmax) and minimum dose (Dmin) in RapidArc and fixed field IMRT for PTV were 68.4±0.6 Gy, 74.8±0.9 Gy and 56.8±1.1 Gy; and 67.6±0.6 Gy, 73.8±0.4 Gy and 57.5±0.6 Gy (P<0.05), respectively. Homogeneity index was 78.85±1.29 in RapidArc and 80.34±0.54 (P<0.05) in IMRT. The conformity index (CI: 95%) was 0.78±0.01 for both techniques (P>0.05). Compared to IMRT, RapidArc allowed a reduction of Dmean to the brain stem, mandible and optic nerves of 14.1% (P<0.05), 5.6% (P<0.05) and 12.2% (P<0.05), respectively. For the healthy tissue and the whole absorbed dose, Dmean of RapidArc was reduced by 3.6% (P<0.05), and 3.7% (P<0.05), respectively. The Dmean to the parotids, the spinal cord and the lens had no statistical difference among them. The mean MU values of RapidArc and IMRT were 550 and 1,379. The mean treatment time of RapidArc and IMRT was 165 s and 447 s. Compared to IMRT, the delivery time and the MU values of RapidArc were reduced by 63% and 60%, respectively. Conclusion: For locally advanced NPC, both RapidArc and IMRT reached the clinic requirement. The target volume coverage was similar for the different techniques. The RapidArc technique showed some improvements in OARs and other tissue sparing while using reduced MUs and delivery time.
文摘Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.
基金supported by Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)National Key Technology R&D Program(Grant No.2017YFB1401805)+1 种基金the China Postdoctoral Science Foundation(2019T120285,2018M641884)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z18235)。
文摘The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
文摘AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT and 42 VMAT). Dose were 63.8 Gy(HT) and 63.2 Gy(VMAT) in the tumour bed, 52.2 Gy in the breast, 50.4 Gy in supraclavicular nodes(SCN) and internal mammary chain(IMC) with HT and 52.2 Gy and 49.3 Gy in IMC and SCN with VMAT in 29 fractions. Margins to particle tracking velocimetry were greater in the VMAT cohort(7 mm vs 5 mm).RESULTS For the HT cohort, the coverage of clinical target volumes was as follows: Tumour bed: 99.4% ± 2.4%; breast: 98.4% ± 4.3%; SCN: 99.5% ± 1.2%; IMC:96.5% ± 13.9%. For the VMAT cohort, the coverage was as follows: Tumour bed: 99.7% ± 0.5%, breast: 99.3% ± 0.7%; SCN: 99.6% ± 1.4%; IMC: 99.3% ± 3%. For ipsilateral lung, Dmean and V20 were 13.6 ± 1.2 Gy, 21.1% ± 5%(HT) and 13.6 ± 1.4 Gy, 20.1% ± 3.2%(VMAT). Dmean and V30 of the heart were 7.4 ± 1.4 Gy, 1% ± 1%(HT) and 10.3 ± 4.2 Gy, 2.5% ± 3.9%(VMAT). For controlateral breast Dmean was 3.6 ± 0.2 Gy(HT) and 4.6 ± 0.9 Gy(VMAT). Acute skin toxicity grade 3 was 5% in the two cohorts.CONCLUSION HT and VMAT in complex adjuvant breast irradiation allow a good coverage of target volumes with an acceptable acute tolerance. A longer follow-up is needed to assess the impact of low doses to healthy tissues.