Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of visco...Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.展开更多
Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelas...Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.展开更多
The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other numerical and analytical dynamic methods. The material behavior was d...The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other numerical and analytical dynamic methods. The material behavior was described in terms of the Boltzmann superposition principle. The Galerkin method was used to simplify the original integro-partial-differential model into a two-mode approximate integral model,which further reduced to an ordinary differential model by introducing new variables. The dynamic properties of one-mode and two-mode truncated systems were numerically compared.The influence of viscoelastic properties of the material,the loading amplitude and the initial values on the dynamic behavior of the plate under in-plane periodic excitations was discussed.展开更多
文摘Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.
文摘Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.
文摘The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other numerical and analytical dynamic methods. The material behavior was described in terms of the Boltzmann superposition principle. The Galerkin method was used to simplify the original integro-partial-differential model into a two-mode approximate integral model,which further reduced to an ordinary differential model by introducing new variables. The dynamic properties of one-mode and two-mode truncated systems were numerically compared.The influence of viscoelastic properties of the material,the loading amplitude and the initial values on the dynamic behavior of the plate under in-plane periodic excitations was discussed.