The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus ...The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.展开更多
Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application...Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application environment and topological structure and operating principles of hybrid circuit breakers, and key stress parameters in transient state process of two time dimensions are extracted. The established digital simulation circuit for PSCAD/EMTDC device-level operation of the circuit breaker has verified the stress properties of millisecond level breaking process and microsecond level commutation process. Then, equivalent test method, circuits and parameters based on LC power supply are proposed on the basis of stress extraction. Finally, the results of implemented breaking tests for complete 200 kV circuit breaker, 100 kV and 50 kV circuit breaker units, as well as single power electronic module have verified the accuracy of the simulation circuit and mathematical analysis. The result of this paper can be a guide to electrical structure and test system design of hybrid HVDC circuit breaker.展开更多
The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along ...The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.展开更多
The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including...The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.展开更多
Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 u...Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 using analytical equations. Petrol tankers are not circular but elliptical probably for stability during transportation. This paper has used the finite element method to investigate in-plane displacements and Von-Mises stresses in both circular and elliptical cylindrical tanks under full loading. An elliptical OANDO? tanker of 66.78 m3volume and shell thickness of0.2 mmand an equivalent volume circular cylindrical tank was used for the simulation. MATLAB? was used to generate geometrical mesh model of the petroleum tankers, extract element coordinates and conduct the finite element analysis. Plane strain condition was used in analyzing a section of the petroleum tanker. It was observed that an equivalent volume circular cylindrical tank was under a higher internal pressure (16,858 N/m2) compared to the elliptical cylinder (14,480 N/m2). Von-Mises stress and in-plane displacements showed direct linear relationships with internal fluid pressure. Von-Mises stress in the elliptical tank was found to be lower (5.7 × 106 N/m2) than for the circular tank (8 × 106 N/m2). In plane displacements was zero in the longitudinal direction for both tanks and of the order of 10-4 mm in the y-direction for both tanks with the circular larger by about 2.5 × 10-3 cm. So in addition to tank stability on the lorry, the Von-Mises stresses were lower as well for the elliptical tank. It was also observed that Von-Mises stresses were far below the yield stress of the steel plate. However, the effect of weldment area on lowering of yield stress was not studied. Stress values were validated using analytical method and found to be insignificantly different (P > 0.05).展开更多
The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same...The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.展开更多
The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to re...The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.展开更多
Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration...Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.展开更多
基金financially supported by the National Nature Science Foundation of China (Grant Nos. 42022053 and 41877220)
文摘The equivalent elastic modulus is a parameter for controlling the deformation behavior of fractured rock masses in the equivalent continuum approach.The confining stress,whose effect on the equivalent elastic modulus is of great importance,is the fundamental stress environment of natural rock masses.This paper employs an analytical approach to obtain the equivalent elastic modulus of fractured rock masses containing random discrete fractures(RDFs)or regular fracture sets(RFSs)while considering the confining stress.The proposed analytical solution considers not only the elastic properties of the intact rocks and fractures,but also the geometrical structure of the fractures and the confining stress.The performance of the analytical solution is verified by comparing it with the results of numerical tests obtained using the three-dimensional distinct element code(3DEC),leading to a reasonably good agreement.The analytical solution quantitatively demonstrates that the equivalent elastic modulus increases substantially with an increase in confining stress,i.e.it is characterized by stress-dependency.Further,a sensitivity analysis of the variables in the analytical solution is conducted using a global sensitivity analysis approach,i.e.the extended Fourier amplitude sensitivity test(EFAST).The variations in the sensitivity indices for different ranges and distribution types of the variables are investigated.The results provide an in-depth understanding of the influence of the variables on the equivalent elastic modulus from different perspectives.
基金supported by SGCC Scientific and Technological Project(52110116004W)
文摘Firstly, relevant stress properties of millisecond level breaking process and microsecond level commutation process of hybrid HVDC circuit breaker are studied in detail on the basis of the analysis for the application environment and topological structure and operating principles of hybrid circuit breakers, and key stress parameters in transient state process of two time dimensions are extracted. The established digital simulation circuit for PSCAD/EMTDC device-level operation of the circuit breaker has verified the stress properties of millisecond level breaking process and microsecond level commutation process. Then, equivalent test method, circuits and parameters based on LC power supply are proposed on the basis of stress extraction. Finally, the results of implemented breaking tests for complete 200 kV circuit breaker, 100 kV and 50 kV circuit breaker units, as well as single power electronic module have verified the accuracy of the simulation circuit and mathematical analysis. The result of this paper can be a guide to electrical structure and test system design of hybrid HVDC circuit breaker.
基金supported by the National Natural Science Foundation of China under grant 52077122 and by the Taishan Industrial Experts Program.
文摘The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.
基金Supported by the National Natural Science Foundation of China (50809019).
文摘The stress combination method for the fatigue assessment of the hatch comer of a bulk carrier was investigated based on equivalent waves. The principles of the equivalent waves of ship structures were given, including the determination of the dominant load parameter, heading, frequency, and amplitude of the equivalent regular waves. The dominant load parameters of the hatch comer of a bulk carrier were identified by the structural stress response analysis, and then a series of equivalent regular waves were defined based on these parameters. A combination method of the structural stress ranges under the different equivalent waves was developed for the fatigue analysis. The combination factors were obtained by least square regression analysis with the stress ranges derived from spectral fatigue analysis as the target value. The proposed method was applied to the hatch comer of another bulk carrier as an example. This shows that the results from the equivalent wave approach agree well with those from the spectral fatigue analysis. The workload is reduced substantially. This method can be referenced in the fatigue assessment of the hatch comer of a bulk carrier.
文摘Road tankers are the most used means of transporting petroleum product to end users due to its cost effectiveness and energy-efficiency. The cylindrical tank has been well designed for by ASME VIII divisions 1 and 2 using analytical equations. Petrol tankers are not circular but elliptical probably for stability during transportation. This paper has used the finite element method to investigate in-plane displacements and Von-Mises stresses in both circular and elliptical cylindrical tanks under full loading. An elliptical OANDO? tanker of 66.78 m3volume and shell thickness of0.2 mmand an equivalent volume circular cylindrical tank was used for the simulation. MATLAB? was used to generate geometrical mesh model of the petroleum tankers, extract element coordinates and conduct the finite element analysis. Plane strain condition was used in analyzing a section of the petroleum tanker. It was observed that an equivalent volume circular cylindrical tank was under a higher internal pressure (16,858 N/m2) compared to the elliptical cylinder (14,480 N/m2). Von-Mises stress and in-plane displacements showed direct linear relationships with internal fluid pressure. Von-Mises stress in the elliptical tank was found to be lower (5.7 × 106 N/m2) than for the circular tank (8 × 106 N/m2). In plane displacements was zero in the longitudinal direction for both tanks and of the order of 10-4 mm in the y-direction for both tanks with the circular larger by about 2.5 × 10-3 cm. So in addition to tank stability on the lorry, the Von-Mises stresses were lower as well for the elliptical tank. It was also observed that Von-Mises stresses were far below the yield stress of the steel plate. However, the effect of weldment area on lowering of yield stress was not studied. Stress values were validated using analytical method and found to be insignificantly different (P > 0.05).
文摘The optimum design of equivalent accelerated life testing plan based on proportional hazards-proportional odds model using D-optimality is presented. The defined equivalent test plan is the test plan that has the same value of the determinant of Fisher information matrix. The equivalent test plan of step stress accelerated life testing (SSALT) to a baseline optimum constant stress accelerated life testing (CSALT) plan is obtained by adjusting the censoring time of SSALT and solving the optimization problem for each case to achieve the same value of the determinant of Fisher information matrix as in the baseline optimum CSALT plan. Numer- ical examples are given finally which demonstrate the equivalent SSALT plan to the baseline optimum CSALT plan reduces almost half of the test time while achieving approximately the same estimation errors of model parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No 50278098).
文摘The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established. In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.
基金the Nalional Natural Science Foundation of China (No.19632030,50003005)the Education Committee of Hunan Province (No.99C122)
文摘Stress-dependence of the intrinsic time of viscoelastic materialsis investigated. The influence of stress level on the intrinsic timeis considered to be similar to that of temperature, pressure, solventcon- centration, damage and physical aging. Thetime-temperature-stress equivalence principle is proposed, byemploying which, the creep curves at different temperatures andstress level can be shifted into a master curve at referencetemperature and stress level.