In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework ...In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.展开更多
Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the...Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. Then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.展开更多
A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of...A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are inves- tigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circu- lation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.展开更多
In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted init...In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.展开更多
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robo...A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.展开更多
In this paper,the fluid transport in the interaction of two co-axial co-rotating vortex rings are investigated.Vortex rings are generated using the piston-cylinder apparatus,and the resulting velocity fields are measu...In this paper,the fluid transport in the interaction of two co-axial co-rotating vortex rings are investigated.Vortex rings are generated using the piston-cylinder apparatus,and the resulting velocity fields are measured using digital particle image velocimetry.The interaction process is analysed by means of vorticity contour,as well by investigation of the Lagrangian coherent structures(LCSs)defined by the ridges of the finite-time Lyapunov exponent(FTLE).Experimental results demonstrate that two types of vortex interaction are identified,namely strong and weak interactions,respectively.For the strong interaction,the Lagrangian boundaries of the two vortex rings are merged together and form a flux window for fluid transport.For weak interaction,only the Lagrangian drift induced by the motion of the front vortex ring is observed and affects the Lagrangian boundary of the rear vortex ring.Moreover,the fluids transported in the strong interaction carry considerable momentum but no circulation.By contrast,there are nearly no fluxes occurring in the weak interaction.By tracking the variations of circulation and impulse occupied by the separated regions distinguished by the LCSs,it is found that the circulation nearly has no change,but the impulse occupied by vortex core region has significant change.In the strong interaction,the impulse of rear vortex ring decreases but the impulse of the front vortex ring increases.Based on the impulse law,it is speculated that the fluid force generated by the formation of the rear vortex rings can be enhanced.Therefore,the strong interaction between wake vortices can actually improve the propulsive efficiency of the biological systems by operating the formation of large-scale vortices.展开更多
A vortex ring impacting a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re=4×104 based on the initial diameter and translational speed of the vortex ring.The effects of bump ...A vortex ring impacting a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re=4×104 based on the initial diameter and translational speed of the vortex ring.The effects of bump height and vortex core thickness for thin and thick vortex rings on the vortical flow phenomena and the underlying physical mechanisms are investigated.Based on the analysis of the evolution of vortical structures,two typical kinds of vortical structures,i.e.,the wrapping vortices and the hair-pin vortices,are identified and play an important role in the flow state evolution.The boundary vorticity flux is analyzed to reveal the mechanism of the vorticity generation on the bump surface.The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution.Further,the analysis of turbulent kinetic energy reveals the transition from laminar to turbulent state.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the flow evolution and the flow transition to turbulent state.展开更多
The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diamet...The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.展开更多
A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise ...A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow(SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91441205 and 91941301)China Postdoctoral Science Foundation(Grant No.2018M642007).
文摘In order to understand the mass transport and the dynamic genesis associated with a compressible vortex formation,a dynamic analysis of compressible vortex rings (CVRs) generated by shock tubes by using the framework of Lagrangiancoherent structures (LCSs) and finite-time Lyapunov exponents field (FTLE) is performed. Numerical calculation is performed to simulate the evolution of CVRs generated by shock tubes with 70 mm, 100 mm, and 165 mm of the driver sectionat the circumstances of pressure ratio = 3. The formation of CVRs is studied according to FTLE fields. The mass transportduring the formation is obviously seen by the material manifold reveled by FTLE fields. A non-universal formation numberfor the three CVRs is obtained. Then the elliptic LCSs is implemented on three CVRs. Fluid particles separated by ellipticLCSs and ridges of FTLE are traced back to t = 0 to identify the fluid that eventually forms the CVRs. The elliptic LCSsencompass around 60% fluid material of the advected bulk but contain the majority of the circulation of the ring. The otherparts of the ring carrying almost zero circulation advect along with the ring. Combining the ridges of FTLE and the ellipticLCS, the whole CVR can be divided into three distinct dynamic parts: vortex part, entrainment part, and advected part. Inaddition, a criterion based on the vortex part formation is suggested to identify the formation number of CVRs.
基金supported by the National Natural Science Foundation of China (11132010 and 11072236)the 111 Project (B07033)
文摘Abstract A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 10^4 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. Then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.
基金supported by the National Natural Science Foundation of China(11202100)the Natural Science Fund in Jiangsu Province(BK2011723)
文摘A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are inves- tigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circu- lation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.
基金Supported by the National Natural Science Foundation of China (No. 50236030, No. 50076038) and the Major State Basic Research Development Program of China (No. G19990222).
文摘In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.
基金supported by the National Natural Science Foundation of China (10772017 and 10472011)BUAA-985 Foundation
文摘A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support frame- work using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a trans- lational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.
基金Project supported by the of National Basic Research Development Program of China(973 Program,Grant No.2014CB744802)the National Natural Science Foundation of China(Grant Nos.91852106,91841303)the National Numerical Wind Tunnel Project(Grant No.NNW2019ZT4-B09).
文摘In this paper,the fluid transport in the interaction of two co-axial co-rotating vortex rings are investigated.Vortex rings are generated using the piston-cylinder apparatus,and the resulting velocity fields are measured using digital particle image velocimetry.The interaction process is analysed by means of vorticity contour,as well by investigation of the Lagrangian coherent structures(LCSs)defined by the ridges of the finite-time Lyapunov exponent(FTLE).Experimental results demonstrate that two types of vortex interaction are identified,namely strong and weak interactions,respectively.For the strong interaction,the Lagrangian boundaries of the two vortex rings are merged together and form a flux window for fluid transport.For weak interaction,only the Lagrangian drift induced by the motion of the front vortex ring is observed and affects the Lagrangian boundary of the rear vortex ring.Moreover,the fluids transported in the strong interaction carry considerable momentum but no circulation.By contrast,there are nearly no fluxes occurring in the weak interaction.By tracking the variations of circulation and impulse occupied by the separated regions distinguished by the LCSs,it is found that the circulation nearly has no change,but the impulse occupied by vortex core region has significant change.In the strong interaction,the impulse of rear vortex ring decreases but the impulse of the front vortex ring increases.Based on the impulse law,it is speculated that the fluid force generated by the formation of the rear vortex rings can be enhanced.Therefore,the strong interaction between wake vortices can actually improve the propulsive efficiency of the biological systems by operating the formation of large-scale vortices.
基金the National Natural Science Foundation of China(Grants 11132010,11372304 and 11072236)the 111 Project(Grant B07033)。
文摘A vortex ring impacting a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re=4×104 based on the initial diameter and translational speed of the vortex ring.The effects of bump height and vortex core thickness for thin and thick vortex rings on the vortical flow phenomena and the underlying physical mechanisms are investigated.Based on the analysis of the evolution of vortical structures,two typical kinds of vortical structures,i.e.,the wrapping vortices and the hair-pin vortices,are identified and play an important role in the flow state evolution.The boundary vorticity flux is analyzed to reveal the mechanism of the vorticity generation on the bump surface.The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution.Further,the analysis of turbulent kinetic energy reveals the transition from laminar to turbulent state.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the flow evolution and the flow transition to turbulent state.
文摘The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11221061,11272013,and 11302006)
文摘A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000(based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow(SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes.