期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Alignment of Track Oscillations during Tropical Cyclone Rapid Intensification
1
作者 Tong XIE Liguang WU +1 位作者 Yecheng FENG Jinghua YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期655-670,共16页
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ... Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs. 展开更多
关键词 tropical cyclone rapid intensification vortex tilt Rossby wave
下载PDF
EFFECTS OF VERTICAL WIND SHEAR ON INTENSITY AND STRUCTURE OF TROPICAL CYCLONE 被引量:7
2
作者 陈启智 方娟 《Journal of Tropical Meteorology》 SCIE 2012年第2期172-186,共15页
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of T... In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly. 展开更多
关键词 vertical wind shear tropical cyclone vortex tilting CONVECTION
下载PDF
Comparison of coupled and uncoupled models in simulating Monsoon Intraseasonal Oscillation from CMIP6
3
作者 Baosheng Li Dake Chen +1 位作者 Tao Lian Jianhuang Qin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期100-108,共9页
The monsoon intraseasonal oscillation(MISO)is the dominant variability over the Indian Ocean during the Indian summer monsoon(ISM)season and is characterized by pronounced northward propagation.Previous studies have s... The monsoon intraseasonal oscillation(MISO)is the dominant variability over the Indian Ocean during the Indian summer monsoon(ISM)season and is characterized by pronounced northward propagation.Previous studies have shown that general circulation models(GCMs)still have difficulty in simulating the northwardpropagating MISO,and that the role of air-sea interaction in MISO is unclear.In this study,14 atmosphere-ocean coupled GCMs(CGCMs)and the corresponding atmosphere-only GCMs(AGCMs)are selected from Phase 6 of the Coupled Model Intercomparison Project(CMIP6)to assess their performance in reproducing MISO and the associated vortex tilting mechanism.The results show that both CGCMs and AGCMs are able to well simulate the significant relationship between MISO and vortex tilting.However,80%of CGCMs show better simulation skills for MISO than AGCMs in CMIP6.In AGCMs,the poor model fidelity in MISO is due to the failure simulation of vortex tilting.Moreover,it is found that failure to simulate the downward motion to the north of convection is responsible for the poor simulation of vortex tilting in AGCMs.In addition,it is observed that there is a significant relationship between the simulated sea surface temperature gradient and simulated vertical velocity shear in the meridional direction.These findings indicate that air-sea interaction may play a vital role in simulating vertical motions in tilting and MISO processes.This work offers us a specific target to improve the MISO simulation and further studies are needed to elucidate the physical processes of this air-sea interaction coupling with vortex tilting. 展开更多
关键词 monsoon intraseasonal oscillation(MISO) model comparison vortex tilting CMIP6
下载PDF
Tilted spatiotemporal optical vortex with partial temporal coherence [Invited] 被引量:1
4
作者 Jordan Adams Andy Chong 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第12期7-10,共4页
We report the experimental and theoretical investigation of tilted spatiotemporal optical vortices with partial temporal coherence.The theoretical study shows that the instantaneous spatiotemporal optical vortex is wi... We report the experimental and theoretical investigation of tilted spatiotemporal optical vortices with partial temporal coherence.The theoretical study shows that the instantaneous spatiotemporal optical vortex is widely variable with the statistical orbital angular momentum(OAM)direction.While decreasing temporal coherence results in a larger variability of OAM tilt,the average OAM direction is relatively unchanged. 展开更多
关键词 STOVs tilted optical vortex partial temporal coherence optical OAM partially coherent OAM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部