Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollutio...Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollution. The result is compared with DRASTIC method. It is shown that by taking the fuzziness into consideration, the fuzzy pattern recognition and optimization method reflects more efficiently the fuzzy nature of the groundwater vulnerability to pollution and is more applicable in reality.展开更多
The protection of aquifers is a major concern for the authorities, especially in areas where there are large agro-industrial exploitations. The objective of this study is to define a new method of aquifer protection b...The protection of aquifers is a major concern for the authorities, especially in areas where there are large agro-industrial exploitations. The objective of this study is to define a new method of aquifer protection based on the characteristics of the structures of aquifers. The intrinsic vulnerability mapping method, PaPRI was used. It is a variant of the PaPRIKa method applied in karstic environment which has been adapted for its application in basement environment. This method uses three factors, including aquifer protection (P), using the soil cover, the unsaturated zone and the thickness of the alteration layer, (R) for the rock type and (I) for infiltration which including slope and drainage density. PAPRI is a method based on the weighting of different factors. The results obtained show 4 classes that evolve from low vulnerability classes (5% of the study area) to high and very high vulnerability classes (58%) and average vulnerability classes (37%). The classes of high and very high vulnerability, which indicate the zones that are very exposed to pollution, are more present in the central-northern part of the study area, with a few appearances towards the south. These zones could be related to topography due to the often very high slopes observed in the area. One of the advantages of this new method lies in the characterization of the alterations that strongly influence the migration of pollutants towards the water tables according to their nature and their thickness.展开更多
基金Project (No. ICA4-CT-2001-10039) supported by Manporivers(Management policies for priority water pollutants and their effects onfoods and human health: general methodology and application toChinese river basins)
文摘Based on the widely used DRASTIC method, a fuzzy pattern recognition and optimization method was proposed and applied to the fissured-karstic aquifer of Zhangji area for assessing groundwater vulnerability to pollution. The result is compared with DRASTIC method. It is shown that by taking the fuzziness into consideration, the fuzzy pattern recognition and optimization method reflects more efficiently the fuzzy nature of the groundwater vulnerability to pollution and is more applicable in reality.
文摘The protection of aquifers is a major concern for the authorities, especially in areas where there are large agro-industrial exploitations. The objective of this study is to define a new method of aquifer protection based on the characteristics of the structures of aquifers. The intrinsic vulnerability mapping method, PaPRI was used. It is a variant of the PaPRIKa method applied in karstic environment which has been adapted for its application in basement environment. This method uses three factors, including aquifer protection (P), using the soil cover, the unsaturated zone and the thickness of the alteration layer, (R) for the rock type and (I) for infiltration which including slope and drainage density. PAPRI is a method based on the weighting of different factors. The results obtained show 4 classes that evolve from low vulnerability classes (5% of the study area) to high and very high vulnerability classes (58%) and average vulnerability classes (37%). The classes of high and very high vulnerability, which indicate the zones that are very exposed to pollution, are more present in the central-northern part of the study area, with a few appearances towards the south. These zones could be related to topography due to the often very high slopes observed in the area. One of the advantages of this new method lies in the characterization of the alterations that strongly influence the migration of pollutants towards the water tables according to their nature and their thickness.