In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in...In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.展开更多
By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. ...By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. Using this result, we give a simple proof of a result of Bercovici, Foias, and Pearcy on reflexivity of shift operators. Also, it is shown that every power of an invertible bilateral weighted shift is reflexive.展开更多
In this article, we give an operator transform T (*) from class A operator to the class of hyponormal operators. It is different from the operator transform T defined by M. Ch and T. Yamazaki. Then, we show that σ...In this article, we give an operator transform T (*) from class A operator to the class of hyponormal operators. It is different from the operator transform T defined by M. Ch and T. Yamazaki. Then, we show that σ(T ) = σ( T (*)) and σa(T )/{0} = σa( T (*))/{0}, in case T belongs to class A. Next, we obtain some relations between T and T (9).展开更多
The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectr...The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectra and numerical range of p-ω-hyponormal operators is obtained, On the other hand, for p-ω-hyponormal operators T,it is showed that if Y is normal,then T is also normal.展开更多
We introduce a new family of classes of operators termed as *p-paranormal operator, classes *A(p,p);p > 0 and *A(p,q);p, q > 0, parallel to p-paranormal operator and classes A(p,p);p> 0 and A(p,q);p, q > 0...We introduce a new family of classes of operators termed as *p-paranormal operator, classes *A(p,p);p > 0 and *A(p,q);p, q > 0, parallel to p-paranormal operator and classes A(p,p);p> 0 and A(p,q);p, q > 0 introduced by M. Fujii, D. Jung, S. H. Lee, M. Y. Lee and R. Nakamoto [1]. We present a necessary and sufficient condition for p-hyponormal operator T∈B(H)to be *p-paranormal and the monotonicity of *A(p,q). We also present an alternative proof of a result of M. Fujii, et al. [1, Theorem 3.4].展开更多
The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the correspon...The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the corresponding work of the references.展开更多
Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm...Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.展开更多
Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main r...Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main results are Theorems 4.1 and Theorems4.2. Theorem 4.1 gives the sufficient condition that a weighted shifts M-hyponormal operator is hyponormalizable. Theorem 4.2 gives the sufficient condition that a hyponormalizable weighted shift operator is M-hyponormal. Finally, invariant subspaces of such operators are discussed.展开更多
For a hyponormal operator T if there is a polynomial p(·) such that σ(p(T))= {0}, then p(T) =0. In general, it is proved in this way: from σ(p(T)) =0, we know that σ(T) consists of finite points, and therefore...For a hyponormal operator T if there is a polynomial p(·) such that σ(p(T))= {0}, then p(T) =0. In general, it is proved in this way: from σ(p(T)) =0, we know that σ(T) consists of finite points, and therefore T must be normal and so is p(T), hence p(T) =0.展开更多
By bounded vector-valued functions and block matrix representations of Hankel operators, we completely characterize the hyponormality of Toeplitz operators on the Hardy space of the polydisk.
In this paper,we prove that the necessary and sufficient condition for a Toeplitz operator Tu on the Dirichlet space to be hyponormal is that the symbol u is constant for the case that the projection of u in the Diric...In this paper,we prove that the necessary and sufficient condition for a Toeplitz operator Tu on the Dirichlet space to be hyponormal is that the symbol u is constant for the case that the projection of u in the Dirichlet space is a polynomial and for the case that u is a class of special symbols,respectively.We also prove that a Toeplitz operator with harmonic polynomial symbol on the harmonic Dirichlet space is hyponormal if and only if its symbol is constant.展开更多
We introduce the notion of weak k-hyponormality and polynomial hyponormality for commuting operator pairs on a Hilbert space and investigate their relationship with k-hyponormality and subnormality.We provide examples...We introduce the notion of weak k-hyponormality and polynomial hyponormality for commuting operator pairs on a Hilbert space and investigate their relationship with k-hyponormality and subnormality.We provide examples of 2-variable weighted shifts which are weakly 1-hyponormal but not hyponormal.By relating the weak k-hyponormality and k-hyponormality of a commuting operator pair to positivity of restriction of some linear functionals to corresponding cones of functions,we prove that there is an operator pair that is polynomially hyponormal but not 2-hyponormal,generalizing Curto and Putinar’s result(1991,1993)to the two-variable case.展开更多
In this paper,we mainly study the hyponormality of dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space.First we show that the dual Toeplitz operator with the bounded symbol is hyponormal...In this paper,we mainly study the hyponormality of dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space.First we show that the dual Toeplitz operator with the bounded symbol is hyponormal if and only if it is normal.Then we obtain a necessary and sufficient condition for the dual Toeplitz operator S_(φ) with the symbol φ(z)=az^(n1zm1)+bz^(n2zm2)(n1,n2,m1,m2∈N and a,b∈C)to be hyponormal.Finally,we show that the rank of the commutator of two dual Toeplitz operators must be an even number if the commutator has a finite rank.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0093827)
文摘In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.
基金supported by a grant (No.86-GR-SC-27) from Shiraz University Research Council
文摘By an elementary proof, we use a result of Conway and Dudziak to show that if A is a hyponormal operator with spectral radius r(A) such that its spectrum is the closed disc {z:|z| ≤ r(A)} then A is reflexive. Using this result, we give a simple proof of a result of Bercovici, Foias, and Pearcy on reflexivity of shift operators. Also, it is shown that every power of an invertible bilateral weighted shift is reflexive.
基金supported by Science Foundation of Ministry of Education of China (208081)Technology and pioneering project in Henan Provice (102300410012)Education Foundation of Henan Province (2007110016, 2008B110006)
文摘In this article, we give an operator transform T (*) from class A operator to the class of hyponormal operators. It is different from the operator transform T defined by M. Ch and T. Yamazaki. Then, we show that σ(T ) = σ( T (*)) and σa(T )/{0} = σa( T (*))/{0}, in case T belongs to class A. Next, we obtain some relations between T and T (9).
文摘The approximate point spectrum properties of p-ω-hyponormal operators are given and proved. In faet, it is a generalization of approximate point speetrum properties of ω- hyponormal operators. The relation of spectra and numerical range of p-ω-hyponormal operators is obtained, On the other hand, for p-ω-hyponormal operators T,it is showed that if Y is normal,then T is also normal.
文摘We introduce a new family of classes of operators termed as *p-paranormal operator, classes *A(p,p);p > 0 and *A(p,q);p, q > 0, parallel to p-paranormal operator and classes A(p,p);p> 0 and A(p,q);p, q > 0 introduced by M. Fujii, D. Jung, S. H. Lee, M. Y. Lee and R. Nakamoto [1]. We present a necessary and sufficient condition for p-hyponormal operator T∈B(H)to be *p-paranormal and the monotonicity of *A(p,q). We also present an alternative proof of a result of M. Fujii, et al. [1, Theorem 3.4].
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
文摘The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper. The results obtained here generalize the corresponding work of the references.
基金partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
文摘Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.
基金Supported by the NNSF of China(11126286,11201095)Supported by the Research Fund of Heilongjiang Provincial Education Department(12541618)
文摘Let {an}∞n=0be a weight sequence and let W denote the associated unilateral weighted shift on H. In this paper, we consider the connection between the M-hyponormal and hyponormalizable weighted shift operator. Main results are Theorems 4.1 and Theorems4.2. Theorem 4.1 gives the sufficient condition that a weighted shifts M-hyponormal operator is hyponormalizable. Theorem 4.2 gives the sufficient condition that a hyponormalizable weighted shift operator is M-hyponormal. Finally, invariant subspaces of such operators are discussed.
基金Project supported by the National Natural Science Foundation of China
文摘For a hyponormal operator T if there is a polynomial p(·) such that σ(p(T))= {0}, then p(T) =0. In general, it is proved in this way: from σ(p(T)) =0, we know that σ(T) consists of finite points, and therefore T must be normal and so is p(T), hence p(T) =0.
基金Supported by National Natural Science Foundation of China(Grant No.10971020)
文摘By bounded vector-valued functions and block matrix representations of Hankel operators, we completely characterize the hyponormality of Toeplitz operators on the Hardy space of the polydisk.
基金Supported by the National Natural Science Foundation of China (Grant No.10971195)the Natural Science Foundation of Zhejiang Province (Grant Nos.Y6090689 Y6110260)
文摘In this paper,we prove that the necessary and sufficient condition for a Toeplitz operator Tu on the Dirichlet space to be hyponormal is that the symbol u is constant for the case that the projection of u in the Dirichlet space is a polynomial and for the case that u is a class of special symbols,respectively.We also prove that a Toeplitz operator with harmonic polynomial symbol on the harmonic Dirichlet space is hyponormal if and only if its symbol is constant.
基金supported by National Natural Science Foundation of China(GrantNos.10801028 and 11271075)Science and Technology Development Planning Program of Jilin Province(GrantNo.201215008)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120043120003)
文摘We introduce the notion of weak k-hyponormality and polynomial hyponormality for commuting operator pairs on a Hilbert space and investigate their relationship with k-hyponormality and subnormality.We provide examples of 2-variable weighted shifts which are weakly 1-hyponormal but not hyponormal.By relating the weak k-hyponormality and k-hyponormality of a commuting operator pair to positivity of restriction of some linear functionals to corresponding cones of functions,we prove that there is an operator pair that is polynomially hyponormal but not 2-hyponormal,generalizing Curto and Putinar’s result(1991,1993)to the two-variable case.
基金Partially supported by NSFC(Grant No.11701052)the second author was partially supported by the Fundamental Research Funds for the Central Universities(Grant Nos.2020CDJQY-A039 and 2020CDJ-LHSS-003)。
文摘In this paper,we mainly study the hyponormality of dual Toeplitz operators on the orthogonal complement of the harmonic Bergman space.First we show that the dual Toeplitz operator with the bounded symbol is hyponormal if and only if it is normal.Then we obtain a necessary and sufficient condition for the dual Toeplitz operator S_(φ) with the symbol φ(z)=az^(n1zm1)+bz^(n2zm2)(n1,n2,m1,m2∈N and a,b∈C)to be hyponormal.Finally,we show that the rank of the commutator of two dual Toeplitz operators must be an even number if the commutator has a finite rank.