Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was ...Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.展开更多
To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this pap...To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.展开更多
A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite ...A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow.展开更多
Reinforcement learning(RL)algorithms are expected to become the next generation of wind farm control methods.However,as wind farms continue to grow in size,the computational complexity of collective wind farm control ...Reinforcement learning(RL)algorithms are expected to become the next generation of wind farm control methods.However,as wind farms continue to grow in size,the computational complexity of collective wind farm control will exponentially increase with the growth of action and state spaces,limiting its potential in practical applications.In this Letter,we employ a RL-based wind farm control approach with multi-agent deep deterministic policy gradient to optimize the yaw manoeuvre of grouped wind turbines in wind farms.To reduce the computational complexity,the turbines in the wind farm are grouped according to the strength of the wake interaction.Meanwhile,to improve the control efficiency,each subgroup is treated as a whole and controlled by a single agent.Optimized results show that the proposed method can not only increase the power production of the wind farm but also significantly improve the control efficiency.展开更多
Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized to initiate the wind turbine wake meandering phenomenon,a coherent,dynamic,turbine-scale oscillati...Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized to initiate the wind turbine wake meandering phenomenon,a coherent,dynamic,turbine-scale oscillation of the far wake.Triadic interactions,the mechanism of energy transfers between scales,manifest as triples of wavenumbers or frequencies and can be characterized through bispectral analyses.The bispectrum,which correlates the two frequencies to their sum,is calculated by two recently developed multi-dimensional modal decomposition methods:scale-specific energy transfer method and bispectral mode decomposition.Large-eddy simulation of a utility-scale wind turbine in an atmospheric boundary layer with a broad range of large length-scales is used to acquire instantaneous velocity snapshots.The bispectrum from both methods identifies prominent upwind and wake meandering interactions that create a broad range of energy scales including the wake meandering scale.The coherent kinetic energy associated with the interactions shows strong correlation between upwind scales and wake meandering.展开更多
We examined the wake-up effect in a Ti N/Hf_(0.4)Zr_(0.6)O_(2)/TiN structure.The increased polarization was affected by the cumulative duration of a switched electric field and the single application time of the field...We examined the wake-up effect in a Ti N/Hf_(0.4)Zr_(0.6)O_(2)/TiN structure.The increased polarization was affected by the cumulative duration of a switched electric field and the single application time of the field during each switching cycle.The space-charge-limited current was stable,indicating that the trap density did not change during the wake-up.The effective charge density in the space-charge region was extracted from capacitance-voltage curves,which demonstrated an increase in free charges at the interface.Based on changing characteristics in these properties,the wake-up effect can be attributed to the redistribution of oxygen vacancies under the electric field.展开更多
Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus ner...Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz, current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OXIR) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expres- sion reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stim- ulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OXIR expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.展开更多
A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscilla...A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.展开更多
The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D inco...The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number.展开更多
A computational model is established to investigate the effects of a periodic gust flow on the wake structure of ventilated supercavities.The effectiveness of the computational model is validated by comparing with ava...A computational model is established to investigate the effects of a periodic gust flow on the wake structure of ventilated supercavities.The effectiveness of the computational model is validated by comparing with available experimental data.Benefited from this numerical model,the vertical velocity characteristics in the entire flow field can be easily monitored and analyzed under the action of a gust generator;further,the unsteady evolution of the flow parameters of the closed region of the supercavity can be captured in any location.To avoid the adverse effects of mounting struts in the experiments and to obtain more realistic results,the wake structure of a ventilated supercavity without mounting struts is investigated.Unsteady changes in the wake morphology and vorticity distribution pattern of the ventilated supercavity are determined.The results demonstrate that the periodic swing of the gust generator can generate a gust flow and,therefore,generate a periodic variation of the ventilated cavitation numberσ.At the peakσ,a re-entrant jet closure appears in the wake of the ventilated supercavity.At the valleyσ,a twin-vortex closure appears in the wake of the ventilated supercavity.For the forward facing model,the twin vortex appears as a pair of centrally rolled-up vortices,due to the closure of vortex is affected by the structure.For the backward facing model,however,the twin vortex appears alternately as a pair of centrally rolled-up vortices and a pair of centrally rolled-down vortices,against the periodic gust flow.展开更多
Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may caus...Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.展开更多
Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind...Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind turbines(FWT).Some researchers find that wind farms with multiple hub heights could increase the annual energy production(AEP),while previous studies also indicate that wake meandering could increase fatigue loading. This study investigates the wake interaction within a hybrid floating wind farm with multiple hub heights. In this study, FAST.Farm is employed to simulate a hybrid wind farm which consists of four semi-submersible FWTs(5MW and 15MW) with two different hub heights. Three typical wind speeds(below-rated, rated, and over-rated) are considered in this paper to investigate the wake meandering effects on the dynamics of two FWTs. Damage equivalent loads(DEL) of the turbine critical components are computed and analyzed for several arrangements determined by the different spacing of the four turbines. The result shows that the dynamic wake meandering significantly affects downstream turbines’ global loadings and load effects. Differences in DEL show that blade-root flapwise bending moments and mooring fairlead tensions are sensitive to the spacing of the turbines.展开更多
This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit ...This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit is fabricated in TSMC 0.18 μm technology with an area of 0.09 mm 2 . Its current consumption is only 2.1 μA under 1.8 V power supply. It achieves a sensitivity of 0.95 mV at room temperature with a variation of only ±28% over -35℃ to 105℃.展开更多
Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method o...Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.展开更多
In order to clarify the migration mechanism and wake behavior of a single bubble rising near a vertical wall,three-dimensional direct numerical simulations are implemented based on the open-source soft-ware Basilisk a...In order to clarify the migration mechanism and wake behavior of a single bubble rising near a vertical wall,three-dimensional direct numerical simulations are implemented based on the open-source soft-ware Basilisk and various types of migration paths like linear,zigzag and spiral are investigated.The volume of fluid(VOF)method is used to capture the bubble interface at a small scale,while the gas-liquid interface and high-velocity-gradient regions in the flow field are encrypted with the adaptive mesh refinement technology.The results show that the vertical wall has an obstructive effect on the diffusion of the vortex boundary layer on the surface of the bubble migrating in a straight line,and the resulting reaction force tends to push the bubbles away from the wall surface.For the zigzag or spiral movement of a bubble in the x-y plane,the perpendicular wall is an unstable factor,but on the contrary,the motion in the z-y plane is stabilized.展开更多
The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,t...The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,this work investigates the excitation and power spectrum characteristics of electromagnetic radiation for the plasma wake of a typical reentry vehicle.With the aid of parametric decay instability,the excitation condition of electromagnetic radiation for a typical plasma wake is evaluated first.The power spectrum characteristics of electromagnetic radiation,including the effects of both the flight parameters and incident wave parameters are analyzed in detail.The results show that when the phenomenon of excited electromagnetic radiation occurs,plasma wakes closer to the bottom of the vehicle and with faster speeds require higher incident frequencies and thresholds of the electric field.As the frequency of the incident wave increases,peaks appear in the power spectra of plasma wakes,and their magnitudes increase gradually.The frequency shifts of the secondary peaks are equal,whereas,the peaks of the downshifted spectral lines are generally larger than those of the upshifted spectral lines.The work in this paper provides a new idea and method for the tracking of reentry vehicles,which has potential application value in the field of reentry vehicle detection.展开更多
A stratified wake has multiple flow regimes,and exhibits different behaviors in these regimes due to the competing physical effects of momentum and buoyancy.This work aims at automated classification of the weakly and...A stratified wake has multiple flow regimes,and exhibits different behaviors in these regimes due to the competing physical effects of momentum and buoyancy.This work aims at automated classification of the weakly and the strongly stratified turbulence regimes based on information available in a full Reynolds stress model.First,we generate a direct numerical simulation database with Reynolds numbers from 10,000 to 50,000 and Froude numbers from 2 to 50.Order(100)independent realizations of temporally evolving wakes are computed to get converged statistics.Second,we train a linear logistic regression classifier with weight thresholding for automated flow regime classification.The classifier is designed to identify the physics critical to classification.Trained against data at one flow condition,the classifier is found to generalize well to other Reynolds and Froude numbers.The results show that the physics governing wake evolution is universal,and that the classifier captures that physics.展开更多
In this work,we numerically study the structure of the turbulent/nonturbulent(T/NT)interface in a fully developed spatially evolving axisymmetric wake by means of direct numerical simulations.There is a continuous and...In this work,we numerically study the structure of the turbulent/nonturbulent(T/NT)interface in a fully developed spatially evolving axisymmetric wake by means of direct numerical simulations.There is a continuous and contorted pure shear layer(PSL)adjacent to the outer edge of the T/NT interface.The local thickness of the PSLδ_(PSL)exhibits a wide range of scales(from the Kolmogorov scale to the Taylor microscale)and the conditional mean thickness<δ_(PSL)>I/η_(c)≈6 withη_(c)being the centerline Kolmogorov scale is the same as the viscous superlayer.In the viscous superlayer,the pure shear motions without rotation are overwhelmingly dominant.It is also demonstrated that the physics of the turbulent sublayer is closely related to the PSL with a large thickness.Another significant finding is that the time averaged area of the rotational regionA R,and the pure shear region<A_(S)>at different streamwise locations scale with the square of the wake-width b_(U)^(2).This study opens an avenue for a better understanding of the structures of the T/NT interface.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
基金Supported by the Key R&D Program of Shandong Province,China(No.2023ZLYS01)the National Key R&D Program of China(No.2022YFC3104200)+2 种基金the National Natural Science Foundation of China(No.12302301)the China Postdoctoral Science Foundation(No.2023M742229)the Zhejiang Provincial Natural Science Foundation(ZJNSF)(No.LQ22F030002)。
文摘Duo to fluctuations in atmospheric turbulence and yaw control strategies,wind turbines are often in a yaw state.To predict the far wake velocity field of wind turbines quickly and accurately,a wake velocity model was derived based on the method of momentum conservation considering the wake steering of the wind turbine under yaw conditions.To consider the shear effect of the vertical incoming wind direction,a two-dimensional Gaussian distribution function was introduced to model the velocity loss at different axial positions in the far wake region based on the assumption of nonlinear wake expansion.This work also developed a“prediction-correction”method to solve the wake velocity field,and the accuracy of the model results was verified in wake experiments on the Garrad Hassan wind turbine.Moreover,a 33-kW two-blade horizontal axis wind turbine was simulated using this method,and the results were compared with the classical wake model under the same parameters and the computational fluid dynamics(CFD)simulation results.The results show that the nonlinear wake model well reflected the influence of incoming flow shear and yaw wake steering in the wake velocity field.Finally,computation of the wake flow for the Horns Rev offshore wind farm with 80 wind turbines showed an error within 8%compared to the experimental values.The established wake model is less computationally intensive than other methods,has a faster calculation speed,and can be used for engineering calculations of the wake velocity in the far wakefield of wind turbines.
文摘To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.
基金supported by the National Key R&D Program of China(No.2022YFB2602800)the National Science Foundation of China(No.51979257)+3 种基金the Basic Funding of the Central Public Research Institutes(Nos.TKS20210101,TKS20220103,TKS20230102)the Fundamental Research Funds for the Central Universities(No.202413018)the postdoctoral project of Shandong(No.SDCX-ZG-202400218)the postdoctoral project of Qingdao(No.QDBSH20240101013).
文摘A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow.
基金supported by the National Natural Science Foundation of China (Grant No.12388101)the Science Challenge Project+1 种基金the Anhui NARI Jiyuan Electric Power Grid Technology Co.Ltd.through the Joint Laboratory of USTC-NARIthe advanced computing resources provided by the Supercomputing Center of the USTC
文摘Reinforcement learning(RL)algorithms are expected to become the next generation of wind farm control methods.However,as wind farms continue to grow in size,the computational complexity of collective wind farm control will exponentially increase with the growth of action and state spaces,limiting its potential in practical applications.In this Letter,we employ a RL-based wind farm control approach with multi-agent deep deterministic policy gradient to optimize the yaw manoeuvre of grouped wind turbines in wind farms.To reduce the computational complexity,the turbines in the wind farm are grouped according to the strength of the wake interaction.Meanwhile,to improve the control efficiency,each subgroup is treated as a whole and controlled by a single agent.Optimized results show that the proposed method can not only increase the power production of the wind farm but also significantly improve the control efficiency.
基金supported by the National Science Foundation(Grant No.21-36371)supported by the National Science Foundation(Grant Nos.21-38259,21-38286,21-38307,21-37603,and 21-38296)。
文摘Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized to initiate the wind turbine wake meandering phenomenon,a coherent,dynamic,turbine-scale oscillation of the far wake.Triadic interactions,the mechanism of energy transfers between scales,manifest as triples of wavenumbers or frequencies and can be characterized through bispectral analyses.The bispectrum,which correlates the two frequencies to their sum,is calculated by two recently developed multi-dimensional modal decomposition methods:scale-specific energy transfer method and bispectral mode decomposition.Large-eddy simulation of a utility-scale wind turbine in an atmospheric boundary layer with a broad range of large length-scales is used to acquire instantaneous velocity snapshots.The bispectrum from both methods identifies prominent upwind and wake meandering interactions that create a broad range of energy scales including the wake meandering scale.The coherent kinetic energy associated with the interactions shows strong correlation between upwind scales and wake meandering.
基金Project supported by the National Natural Science Foundation of China(Grant No.61201046)the Natural Science Foundation of Beijing,China(Grant Nos.4202009 and 4162013)。
文摘We examined the wake-up effect in a Ti N/Hf_(0.4)Zr_(0.6)O_(2)/TiN structure.The increased polarization was affected by the cumulative duration of a switched electric field and the single application time of the field during each switching cycle.The space-charge-limited current was stable,indicating that the trap density did not change during the wake-up.The effective charge density in the space-charge region was extracted from capacitance-voltage curves,which demonstrated an increase in free charges at the interface.Based on changing characteristics in these properties,the wake-up effect can be attributed to the redistribution of oxygen vacancies under the electric field.
基金supported by the Natural Science Foundation of China,No.81260295the Graduate Student Innovation Fund of Jiangxi Province of China,No.YC2015-S090
文摘Orexins, produced in the lateral hypothalamus, are important neuropeptides that participate in the sleep/wake cycle, and their expres- sion coincides with the projection area of the vagus nerve in the brain. Vagus nerve stimulation has been shown to decrease the amounts of daytime sleep and rapid eye movement in epilepsy patients with traumatic brain injury. In the present study, we investigated whether vagus nerve stimulation promotes wakefulness and affects orexin expression. A rat model of traumatic brain injury was established using the free fall drop method. In the stimulated group, rats with traumatic brain injury received vagus nerve stimulation (frequency, 30 Hz, current, 1.0 mA; pulse width, 0.5 ms; total stimulation time, 15 minutes). In the antagonist group, rats with traumatic brain injury were intracerebroventricularly injected with the orexin receptor type 1 (OXIR) antagonist SB334867 and received vagus nerve stimulation. Changes in consciousness were observed after stimulation in each group. Enzyme-linked immunosorbent assay, western blot assay and immunohistochemistry were used to assess the levels of orexin-A and OX1R expression in the prefrontal cortex. In the stimulated group, consciousness was substantially improved, orexin-A protein expression gradually increased within 24 hours after injury and OX1R expres- sion reached a peak at 12 hours, compared with rats subjected to traumatic brain injury only. In the antagonist group, the wake-promoting effect of vagus nerve stimulation was diminished, and orexin-A and OX1R expression were decreased, compared with that of the stim- ulated group. Taken together, our findings suggest that vagus nerve stimulation promotes the recovery of consciousness in comatose rats after traumatic brain injury. The upregulation of orexin-A and OXIR expression in the prefrontal cortex might be involved in the wake-promoting effects of vagus nerve stimulation.
基金supported by the National Natural Science Foundation of China(Grant No.51679138)the 1000 Young Talent Program(Grant No.15Z127060020)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203 and 2013CB036103)
文摘A phenomenological model for predicting the vortex-induced motion (VIM) of a single-column platform with non- linear stiffness has been proposed. The VIM model is based on the couple of the Duffing-van der Pol oscillators and the motion equations with non-linear terms. The model with liner stiffness is presented for comparison and their results are compared with the experiments in order to calibrate the model. The computed results show that the predicted VIM amplitudes and periods of oscillation are in qualitative agreements with the experimental data. Compared with the results with linear stiffness, it is found that the application of non-linear stiffness causes the significant reductions in the in-line and transverse motion amplitudes. Under the non-linear stiffness constraint, the lock-in behavior is still identified at 8<Ur<15, and the trajectories of the VIM on the xy plane with eight-figure patterns are maintained. The results with different non-linear geometrically parameters show that both in-line and transverse non-linear characteristics can significantly affect the predict in-line and transverse motion amplitudes. Furthermore, the computed results for different aspect ratios indicate that the in-line and transverse motion amplitudes increase with the growth of aspect ratio, and the range of lock-in region is enlarged for the large aspect ratio.
基金The project supported by the State Key Fundamental Research Project of "Large Scale Scientific Computation Research" (G199903281)
文摘The features of the wake behind a uniform circular cylinder atRe=200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number.
基金This study was financially supported by the Taishan Scholars Project of Shandong Province(tsqn201909172)the University Young Innovational Team Program of Shandong Province(2019KJN003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,Weihai(2020)。
文摘A computational model is established to investigate the effects of a periodic gust flow on the wake structure of ventilated supercavities.The effectiveness of the computational model is validated by comparing with available experimental data.Benefited from this numerical model,the vertical velocity characteristics in the entire flow field can be easily monitored and analyzed under the action of a gust generator;further,the unsteady evolution of the flow parameters of the closed region of the supercavity can be captured in any location.To avoid the adverse effects of mounting struts in the experiments and to obtain more realistic results,the wake structure of a ventilated supercavity without mounting struts is investigated.Unsteady changes in the wake morphology and vorticity distribution pattern of the ventilated supercavity are determined.The results demonstrate that the periodic swing of the gust generator can generate a gust flow and,therefore,generate a periodic variation of the ventilated cavitation numberσ.At the peakσ,a re-entrant jet closure appears in the wake of the ventilated supercavity.At the valleyσ,a twin-vortex closure appears in the wake of the ventilated supercavity.For the forward facing model,the twin vortex appears as a pair of centrally rolled-up vortices,due to the closure of vortex is affected by the structure.For the backward facing model,however,the twin vortex appears alternately as a pair of centrally rolled-up vortices and a pair of centrally rolled-down vortices,against the periodic gust flow.
基金Supported by the National Natural Science Foundation of China (No. 6087001)
文摘Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51909109 and 52101314)the Natural Science Foundation of Jiangsu Province (Grant No.BK20190967)。
文摘Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases,wake interference between turbines becomes increasingly significant, especially for floating wind turbines(FWT).Some researchers find that wind farms with multiple hub heights could increase the annual energy production(AEP),while previous studies also indicate that wake meandering could increase fatigue loading. This study investigates the wake interaction within a hybrid floating wind farm with multiple hub heights. In this study, FAST.Farm is employed to simulate a hybrid wind farm which consists of four semi-submersible FWTs(5MW and 15MW) with two different hub heights. Three typical wind speeds(below-rated, rated, and over-rated) are considered in this paper to investigate the wake meandering effects on the dynamics of two FWTs. Damage equivalent loads(DEL) of the turbine critical components are computed and analyzed for several arrangements determined by the different spacing of the four turbines. The result shows that the dynamic wake meandering significantly affects downstream turbines’ global loadings and load effects. Differences in DEL show that blade-root flapwise bending moments and mooring fairlead tensions are sensitive to the spacing of the turbines.
基金Supported by the CAS/SAFEA International Partnership Program for Creative Research TeamsNational Natural Science Foundation of China (No. 61106025)
文摘This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit is fabricated in TSMC 0.18 μm technology with an area of 0.09 mm 2 . Its current consumption is only 2.1 μA under 1.8 V power supply. It achieves a sensitivity of 0.95 mV at room temperature with a variation of only ±28% over -35℃ to 105℃.
文摘Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.
基金supported by the National Natural Science Foundation of China(Grant No.51906262)the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ5735).
文摘In order to clarify the migration mechanism and wake behavior of a single bubble rising near a vertical wall,three-dimensional direct numerical simulations are implemented based on the open-source soft-ware Basilisk and various types of migration paths like linear,zigzag and spiral are investigated.The volume of fluid(VOF)method is used to capture the bubble interface at a small scale,while the gas-liquid interface and high-velocity-gradient regions in the flow field are encrypted with the adaptive mesh refinement technology.The results show that the vertical wall has an obstructive effect on the diffusion of the vortex boundary layer on the surface of the bubble migrating in a straight line,and the resulting reaction force tends to push the bubbles away from the wall surface.For the zigzag or spiral movement of a bubble in the x-y plane,the perpendicular wall is an unstable factor,but on the contrary,the motion in the z-y plane is stabilized.
基金supported by National Natural Science Foundation of China(Nos.62171355,61875156)the 111Project(No.B17035)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2021JM-135)the Stable Support Project of Basic Scientific Research Institutes(Nos.A131901W14,A132001W12)。
文摘The plasma wake of reentry vehicles has the advantages of extensive space range and long traceability,which provides new possibilities for the detection and monitoring of reentry vehicles.Based on the Zakharov model,this work investigates the excitation and power spectrum characteristics of electromagnetic radiation for the plasma wake of a typical reentry vehicle.With the aid of parametric decay instability,the excitation condition of electromagnetic radiation for a typical plasma wake is evaluated first.The power spectrum characteristics of electromagnetic radiation,including the effects of both the flight parameters and incident wave parameters are analyzed in detail.The results show that when the phenomenon of excited electromagnetic radiation occurs,plasma wakes closer to the bottom of the vehicle and with faster speeds require higher incident frequencies and thresholds of the electric field.As the frequency of the incident wave increases,peaks appear in the power spectra of plasma wakes,and their magnitudes increase gradually.The frequency shifts of the secondary peaks are equal,whereas,the peaks of the downshifted spectral lines are generally larger than those of the upshifted spectral lines.The work in this paper provides a new idea and method for the tracking of reentry vehicles,which has potential application value in the field of reentry vehicle detection.
基金This work is supported by ONR,contract N000142012315.
文摘A stratified wake has multiple flow regimes,and exhibits different behaviors in these regimes due to the competing physical effects of momentum and buoyancy.This work aims at automated classification of the weakly and the strongly stratified turbulence regimes based on information available in a full Reynolds stress model.First,we generate a direct numerical simulation database with Reynolds numbers from 10,000 to 50,000 and Froude numbers from 2 to 50.Order(100)independent realizations of temporally evolving wakes are computed to get converged statistics.Second,we train a linear logistic regression classifier with weight thresholding for automated flow regime classification.The classifier is designed to identify the physics critical to classification.Trained against data at one flow condition,the classifier is found to generalize well to other Reynolds and Froude numbers.The results show that the physics governing wake evolution is universal,and that the classifier captures that physics.
基金This work was supported by the National Natural Sci-ence Foundation of China(No.91952105)the Six Tal-ent Peaks Project in Jiangsu Province(No.2019-SZCY-005)the Fundamental Research Funds for Central University(No.30921011212).
文摘In this work,we numerically study the structure of the turbulent/nonturbulent(T/NT)interface in a fully developed spatially evolving axisymmetric wake by means of direct numerical simulations.There is a continuous and contorted pure shear layer(PSL)adjacent to the outer edge of the T/NT interface.The local thickness of the PSLδ_(PSL)exhibits a wide range of scales(from the Kolmogorov scale to the Taylor microscale)and the conditional mean thickness<δ_(PSL)>I/η_(c)≈6 withη_(c)being the centerline Kolmogorov scale is the same as the viscous superlayer.In the viscous superlayer,the pure shear motions without rotation are overwhelmingly dominant.It is also demonstrated that the physics of the turbulent sublayer is closely related to the PSL with a large thickness.Another significant finding is that the time averaged area of the rotational regionA R,and the pure shear region<A_(S)>at different streamwise locations scale with the square of the wake-width b_(U)^(2).This study opens an avenue for a better understanding of the structures of the T/NT interface.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.