期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Role-Based Network Embedding via Quantum Walk with Weighted Features Fusion
1
作者 Mingqiang Zhou Mengjiao Li +1 位作者 Zhiyuan Qian Kunpeng Li 《Computers, Materials & Continua》 SCIE EI 2023年第8期2443-2460,共18页
Role-based network embedding aims to embed role-similar nodes into a similar embedding space,which is widely used in graph mining tasks such as role classification and detection.Roles are sets of nodes in graph networ... Role-based network embedding aims to embed role-similar nodes into a similar embedding space,which is widely used in graph mining tasks such as role classification and detection.Roles are sets of nodes in graph networks with similar structural patterns and functions.However,the rolesimilar nodes may be far away or even disconnected from each other.Meanwhile,the neighborhood node features and noise also affect the result of the role-based network embedding,which are also challenges of current network embedding work.In this paper,we propose a Role-based network Embedding via Quantum walk with weighted Features fusion(REQF),which simultaneously considers the influence of global and local role information,node features,and noise.Firstly,we capture the global role information of nodes via quantum walk based on its superposition property which emphasizes the local role information via biased quantum walk.Secondly,we utilize the quantum walkweighted characteristic function to extract and fuse features of nodes and their neighborhood by different distributions which contain role information implicitly.Finally,we leverage the Variational Auto-Encoder(VAE)to reduce the effect of noise.We conduct extensive experiments on seven real-world datasets,and the results show that REQF is more effective at capturing role information in the network,which outperforms the best baseline by up to 14.6% in role classification,and 23% in role detection on average. 展开更多
关键词 Role-based network embedding quantum walk quantum walk weighted characteristic function complex networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部