Walkers improve self-reliability. We examined the effectiveness of a newly developed wheeled walking frame for use by physically handicapped persons. Unstable gaits in walker users were analyzed by tri-axial accelerom...Walkers improve self-reliability. We examined the effectiveness of a newly developed wheeled walking frame for use by physically handicapped persons. Unstable gaits in walker users were analyzed by tri-axial accelerometers and a motion capture system. Several markers were placed on subjects' backs and legs. Subjects were requested to walk around a test course at a comfortable speed, while their motion was recorded by two high-speed video cameras. The activities performed on the test course comprised standing, normal walking, fast walking, and walking over a barrier. Any accidental falls were also recorded. We established the characteristic rules of gait motion using a walker. Furthermore, we demonstrated that gait characteristics are more conveniently extracted from acceleration sensors than from motion capture systems, since the sensors can be affixed to subjects for self-monitoring and goal achievements. The methods employing acceleration sensors are considered suitable for determining the average gait motions of elderly persons living in nursing homes, and can be used to evaluate walking motion before and aider rehabilitation.展开更多
Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture u...Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture under walking scenery.Due to person's movements,WBAN is a dynamic network,which means that traditional static protocols are no more suitable for it.For solving this problem,firstly,the feature of human walking at a constant speed is analyzed and we divide a spell of movements into a sequence of key frames just like a video constituted by numbers of continuous frames.As a result,the dynamic walking process is translated into several static postures,which the static MAC protocol could be used for.Secondly,concerning the performance of network lifetime,we design a posture-aware approach for lifetime maximization(PA-DPLM).With analytical and simulation results provided,we demonstrate that PA-DPLM protocol is energy-efficient and can be used under constant speed walking scenery.展开更多
文摘Walkers improve self-reliability. We examined the effectiveness of a newly developed wheeled walking frame for use by physically handicapped persons. Unstable gaits in walker users were analyzed by tri-axial accelerometers and a motion capture system. Several markers were placed on subjects' backs and legs. Subjects were requested to walk around a test course at a comfortable speed, while their motion was recorded by two high-speed video cameras. The activities performed on the test course comprised standing, normal walking, fast walking, and walking over a barrier. Any accidental falls were also recorded. We established the characteristic rules of gait motion using a walker. Furthermore, we demonstrated that gait characteristics are more conveniently extracted from acceleration sensors than from motion capture systems, since the sensors can be affixed to subjects for self-monitoring and goal achievements. The methods employing acceleration sensors are considered suitable for determining the average gait motions of elderly persons living in nursing homes, and can be used to evaluate walking motion before and aider rehabilitation.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture under walking scenery.Due to person's movements,WBAN is a dynamic network,which means that traditional static protocols are no more suitable for it.For solving this problem,firstly,the feature of human walking at a constant speed is analyzed and we divide a spell of movements into a sequence of key frames just like a video constituted by numbers of continuous frames.As a result,the dynamic walking process is translated into several static postures,which the static MAC protocol could be used for.Secondly,concerning the performance of network lifetime,we design a posture-aware approach for lifetime maximization(PA-DPLM).With analytical and simulation results provided,we demonstrate that PA-DPLM protocol is energy-efficient and can be used under constant speed walking scenery.