The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop...The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.展开更多
The flow through a breast wall spillway is greatly affected by the centripetal force due to a downstream curved profile. Therefore, the mean vertical pressure distribution at the outlet section is not consistent with ...The flow through a breast wall spillway is greatly affected by the centripetal force due to a downstream curved profile. Therefore, the mean vertical pressure distribution at the outlet section is not consistent with the hydrostatic pressure law. This distribution in turn affects the discharge capacity of the breast wall spillway. This paper experimentally studies the effect of a convex downstream profile on the mean pressure variation and the discharge of a breast wall spillway without gates. It is indicated that the effect of the curvilinear streamline on the mean vertical pressure variation is significant. The regression analysis method is used to determine the water head effect Z o of the orifice opening through the mean pressure variation. A discharge prediction formula of the breast wall spillway is obtained under the limited conditions of a laboratory flume. The predicted discharge is compared to the measured discharge. A good agreement is evidenced for the free orifice flow with errors within ?5%, while a big error(20% or even more) is obtained if the hydrostatic pressure law is used for the determination of Zo.展开更多
基金supported by the Strategic International Science and Technology Innovation Cooperation Project‘Research on On-line Monitoring and Evaluation Technology of Safety Status of Highspeed Railway Track-subgrade System’from the National Key R&D Program of China(Grant No.2018YFE0207100)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology/China University of Mining&Technology,Beijing(Grant No.SKLGDUEK1910)+1 种基金the Foundation of Engineering Research Center of Eco-environment in the Three Gorges Reservoir Region of China(Grant No.KF2018-01)the Youth Scientific and Technological Innovation Team of Southwest Petroleum University(Grant No.2018CXTD02)。
文摘The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51179058,51479058)the State key program of National Science Fund of China(Grant No.51239003)+1 种基金the Special Fund for Public Welfare of Water Resources Ministry(Grant No.201201017)the 111 Project(Grant No.B12032)
文摘The flow through a breast wall spillway is greatly affected by the centripetal force due to a downstream curved profile. Therefore, the mean vertical pressure distribution at the outlet section is not consistent with the hydrostatic pressure law. This distribution in turn affects the discharge capacity of the breast wall spillway. This paper experimentally studies the effect of a convex downstream profile on the mean pressure variation and the discharge of a breast wall spillway without gates. It is indicated that the effect of the curvilinear streamline on the mean vertical pressure variation is significant. The regression analysis method is used to determine the water head effect Z o of the orifice opening through the mean pressure variation. A discharge prediction formula of the breast wall spillway is obtained under the limited conditions of a laboratory flume. The predicted discharge is compared to the measured discharge. A good agreement is evidenced for the free orifice flow with errors within ?5%, while a big error(20% or even more) is obtained if the hydrostatic pressure law is used for the determination of Zo.