It is widely acknowledged that masonry walls in RC (reinforced concrete) frame structures, although often omitted in the design process, contribute significantly on the seismic resistance of buildings. Their contrib...It is widely acknowledged that masonry walls in RC (reinforced concrete) frame structures, although often omitted in the design process, contribute significantly on the seismic resistance of buildings. Their contribution toward seismic response improvement is proportional to their participation level on buildings. The more abundant they are on buildings, their lateral strength contribution gets more significant, especially for "frame systems" of both RC and steel structures. This paper presents an "innovative" solution which aims to provide a seismic protection to masonry walls and to improve the seismic performance of the entire building structure. These goals are achieved through use of so called "IDRIZI" seismic devices. These "box-like" devices are placed at characteristic locations between the masonry infill walls and the structural frame system of the building. They act as special link elements between the top of wall panels and the bottom of beams and/or slabs. The assemblage of a wall panel, IDRIZI seismic devices and other boundary structural elements forms an integral structural system that is shortly called "IDRIZI" wall system. In addition, as part of this paper is shown selected experimental investigations, which demonstrate that under "optimal design" of buildings integrated with IDRIZI wall system, up to 80% of earthquake energy input in the structure can be dissipated by the friction mechanism of the IDRIZI devices. This feature provides remarkable improvements on the seismic performance of residential buildings or any other type of building where masonry walls are abundantly present.展开更多
As capacity design philosophy suggests, the best way to achieve a safe seismic response of multistory buildings, under strong earthquakes, is to uniformly spread the inelastic deformation demands throughout the buildi...As capacity design philosophy suggests, the best way to achieve a safe seismic response of multistory buildings, under strong earthquakes, is to uniformly spread the inelastic deformation demands throughout the building structure. Unfortunately, this type of mechanism is difficult to be reached due to the abundant presence ofinfill wall panels on buildings, which under strong earthquakes show severe cracks and strength degradations, thus complicating the seismic response of buildings. In order to avoid these brittle mechanisms of failure, studies were made toward development of new seismic protection system which would completely protect the infill walls from any cracks and strength degradation manifestations and simultaneously improve the seismic response of the entire structure. Utilization of the "IDRIZI" seismic protection system, would greatly contribute to many important aspects, like the increase of structural seismic performance, drastic reduction of damages under strong earthquake events and avoiding any unpredictable local failure mechanisms on buildings.展开更多
A diode-triggered silicon controlled rectifier (DTSCR) is being developed as an electrostatic discharge (ESD) pro- tection device for low voltage applications. However, DTSCR leaks high current during normal operation...A diode-triggered silicon controlled rectifier (DTSCR) is being developed as an electrostatic discharge (ESD) pro- tection device for low voltage applications. However, DTSCR leaks high current during normal operation due to the Darlington effect of the triggering-assist diode string. In this study, two types of diode string triggered SCRs are designed for low leakage consideration; the modified diode string and composite polysilicon diode string triggered SCRs (MDTSCR & PDTSCR). Com- pared with the conventional DTSCR (CDTSCR), the MDTSCR has a much lower substrate leakage current with a relatively large silicon cost, and the PDTSCR has a much lower substrate leakage current with similar area and shows good leakage performance at a high temperature. Other DTSCR ESD properties are also investigated, especially regarding their layout, triggering voltage and failure current.展开更多
文摘It is widely acknowledged that masonry walls in RC (reinforced concrete) frame structures, although often omitted in the design process, contribute significantly on the seismic resistance of buildings. Their contribution toward seismic response improvement is proportional to their participation level on buildings. The more abundant they are on buildings, their lateral strength contribution gets more significant, especially for "frame systems" of both RC and steel structures. This paper presents an "innovative" solution which aims to provide a seismic protection to masonry walls and to improve the seismic performance of the entire building structure. These goals are achieved through use of so called "IDRIZI" seismic devices. These "box-like" devices are placed at characteristic locations between the masonry infill walls and the structural frame system of the building. They act as special link elements between the top of wall panels and the bottom of beams and/or slabs. The assemblage of a wall panel, IDRIZI seismic devices and other boundary structural elements forms an integral structural system that is shortly called "IDRIZI" wall system. In addition, as part of this paper is shown selected experimental investigations, which demonstrate that under "optimal design" of buildings integrated with IDRIZI wall system, up to 80% of earthquake energy input in the structure can be dissipated by the friction mechanism of the IDRIZI devices. This feature provides remarkable improvements on the seismic performance of residential buildings or any other type of building where masonry walls are abundantly present.
文摘As capacity design philosophy suggests, the best way to achieve a safe seismic response of multistory buildings, under strong earthquakes, is to uniformly spread the inelastic deformation demands throughout the building structure. Unfortunately, this type of mechanism is difficult to be reached due to the abundant presence ofinfill wall panels on buildings, which under strong earthquakes show severe cracks and strength degradations, thus complicating the seismic response of buildings. In order to avoid these brittle mechanisms of failure, studies were made toward development of new seismic protection system which would completely protect the infill walls from any cracks and strength degradation manifestations and simultaneously improve the seismic response of the entire structure. Utilization of the "IDRIZI" seismic protection system, would greatly contribute to many important aspects, like the increase of structural seismic performance, drastic reduction of damages under strong earthquake events and avoiding any unpredictable local failure mechanisms on buildings.
基金Project partially supported by the Zhejiang Provincial Nature Science Fund of China (Nos. Y107055 and Y1080546)the Semiconductor Manufacturing International Corp. (SMIC)
文摘A diode-triggered silicon controlled rectifier (DTSCR) is being developed as an electrostatic discharge (ESD) pro- tection device for low voltage applications. However, DTSCR leaks high current during normal operation due to the Darlington effect of the triggering-assist diode string. In this study, two types of diode string triggered SCRs are designed for low leakage consideration; the modified diode string and composite polysilicon diode string triggered SCRs (MDTSCR & PDTSCR). Com- pared with the conventional DTSCR (CDTSCR), the MDTSCR has a much lower substrate leakage current with a relatively large silicon cost, and the PDTSCR has a much lower substrate leakage current with similar area and shows good leakage performance at a high temperature. Other DTSCR ESD properties are also investigated, especially regarding their layout, triggering voltage and failure current.