Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
Mineralogical zonation of wall rock alterations in Mesozoic granitoids is summarized from 18 gold deposits in Jiaodong gold province on the Asian mobile continental margin of the west circum Pacific rim. This paper ...Mineralogical zonation of wall rock alterations in Mesozoic granitoids is summarized from 18 gold deposits in Jiaodong gold province on the Asian mobile continental margin of the west circum Pacific rim. This paper deals with wall rock alterations developed around gold mineralizations of the quartz vein type in granitoids and the wall rock alteration type in granitoid basement contacts along Mesozoic fault zones trending mostly NNE SSW and NE SW. Five alteration zones are distinguished from host rock to ore zone, namely the chloritization and sericitization zone, the hematitization rutilization and microclinization zone, the quartz sericitization zone, the pyrite quartz sericitization zone and the pyrite silicification zone. The former two are outer zones marked by incomplete alteration of first mafic and then felsic minerals of the granitoids, while the later three are inner zones marked by complete alteration of both mafic and felsic minerals of the granitoids leading to retrogressive sericitization and progressive silicification with participation of ore elements. The whole process proceeds under dynamometamorphism with high fugacity of volatiles. Wall rock alteration is the intermediate link between unaltered host rock and ore mineralization both in time and space. Development of the alteration zonation and its mineral composition controls genetic type of mineralization, size and grade of the deposit and location of the ore zones.展开更多
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ...Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.展开更多
The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The miner...The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-beating argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and pro- pylitization zone. The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase. Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system. Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification. The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied. The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system. Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China.展开更多
Cross-laminated bamboo(CLB)have a high strength to weight ratio and stable bidirectional mechanical properties.Inspired by the investigation on cross-laminated timber(CLT)rocking walls,CLB rocking walls with conventio...Cross-laminated bamboo(CLB)have a high strength to weight ratio and stable bidirectional mechanical properties.Inspired by the investigation on cross-laminated timber(CLT)rocking walls,CLB rocking walls with conventional friction dampers(CFDs)are studied in this paper.To investigate the mechanical properties of the CLB rocking wall,seven tests are conducted under a cyclic loading scheme,and different test parameters,including the existence of the CFDs,the moment ratio,and the loading times,are discussed.The test results show a bilinear behavior of the CLB rocking wall.The small residual displacements of the CLB rocking wall demonstrate an idealized self-centering capacity.The cumulative energy dissipation curves indicate that the energy dissipation capacity of the CLB rocking wall can be greatly improved with CFDs.The limit states of the CLB rocking wall under a lateral force are proposed based on the strains,stress,and damage level of the CLB material and posttensioned rebar.In addition,an analytical model of the CLB rocking wall is developed based on the proposed limit states of the CLB rocking wall to evaluate the hysteretic response of the CLB rocking wall,and the model is validated by the experimental data.The comparison results show the potential value of the analytical model for engineering design.展开更多
This paper proposes the novel concept of retrofitting damaged reinforced concrete frame with self-centering and energy-dissipating rocking wall.Parametric studies were carried out base on pushover and time-history anal...This paper proposes the novel concept of retrofitting damaged reinforced concrete frame with self-centering and energy-dissipating rocking wall.Parametric studies were carried out base on pushover and time-history analysis.In both pushover and time-history analysis,the soft-story mechanism was effectively mitigated through the rocking wall retrofit of the damaged structures.The results demonstrated that the stiffness and bearing capacity of the retrofitted system were improved compare to its intact state.Additionally,the seismic response of the damaged frame retrofitted using rocking wall in combination with post-tension and shear-type damper fell within the relevant design limits.Pushover analysis of the rocking wall indicated that there is a linear relationship between the wall thickness and the initial stiffness of the retrofitted system.The addition of post-tension tendon to the rocking wall system enables the wall to self-center and increases lateral stiffness and bearing capacity of the retrofitted system.When the shear-type damper was installed,the energy dissipation of the system was increased,and the stiffness and bearing capacity of the retrofitted system were also improved.In the time-history analysis,it was found that the thickness of the rocking wall is directly related to the maximum inter-story drift and the distribution patterns of inter-story drift of the frame.As the post-tension was added to the system,the maximum inter-story drift under rare earthquake excitation improved significantly.With the addition of shear-type dampers,the overall drift magnitude of the retrofitted system was fundamentally decreased.展开更多
Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structur...Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structural engineering firm located in Vancouver(Canada)using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center(CCMC)/National Research Council Canada(NRC),is assessed.The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses.Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data.A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected.The ground motions were used in a series of incremental dynamic analyses(IDAs)to quantify the adjustable collapse margin ratio(ACMR)of the prototype balloon type CLT rocking shear walls.The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.展开更多
The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated constructio...The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.展开更多
Post-tensioned concrete rocking walls might be used to avoid severe seismic damage at the base of structural walls, decrease residual drift, and lessen post-earthquake repair costs. The prediction of load-induced dama...Post-tensioned concrete rocking walls might be used to avoid severe seismic damage at the base of structural walls, decrease residual drift, and lessen post-earthquake repair costs. The prediction of load-induced damage to the rocking wall resulting from seismic loading can provide an extremely valuable tool to evaluate the status and safety of structural concrete walls following earthquakes. In this study, the behavior and the damage state of monolithic, self-centering, rocking walls, as a new type of concrete rocking wall, are investigated. The nonlinear mechanical behavior of the wall is first modeled numerically, and subsequently the mechanical parameters from the numerical simulation are used to generate the local damage index. The results from the damage index model are compared with the full-scale test results, confirming the viability of the numerically based damage index method for estimating the seismically induced damage in concrete walls. Moreover, the estimated damage can be utilized as a qualitative and quantitative scale to assess the status of the wall following seismic loading events.Finally, an equation is proposed to estimate the repair cost based on the predicted damage state for the studied structural system.展开更多
Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attention...Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attentions to researchers recently.However,it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor(DCF)for entire systems rationally and efficiently.In this paper,a design method has been exploited for seismic retrofitting of existing RFs using PWs(RF-PWs)via a multi-objective evolutionary algorithm.Then,the method has been investigated and verified through a practical project.Finally,a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method.To sum up,the findings of this investigation show that the method furnished in this paper is feasible,functional and can provide adequate information for determining the stiffness demand and the value of the DCFfor PWs.Furthermore,it can be applied for the preliminary design of these kinds of structures.展开更多
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
文摘Mineralogical zonation of wall rock alterations in Mesozoic granitoids is summarized from 18 gold deposits in Jiaodong gold province on the Asian mobile continental margin of the west circum Pacific rim. This paper deals with wall rock alterations developed around gold mineralizations of the quartz vein type in granitoids and the wall rock alteration type in granitoid basement contacts along Mesozoic fault zones trending mostly NNE SSW and NE SW. Five alteration zones are distinguished from host rock to ore zone, namely the chloritization and sericitization zone, the hematitization rutilization and microclinization zone, the quartz sericitization zone, the pyrite quartz sericitization zone and the pyrite silicification zone. The former two are outer zones marked by incomplete alteration of first mafic and then felsic minerals of the granitoids, while the later three are inner zones marked by complete alteration of both mafic and felsic minerals of the granitoids leading to retrogressive sericitization and progressive silicification with participation of ore elements. The whole process proceeds under dynamometamorphism with high fugacity of volatiles. Wall rock alteration is the intermediate link between unaltered host rock and ore mineralization both in time and space. Development of the alteration zonation and its mineral composition controls genetic type of mineralization, size and grade of the deposit and location of the ore zones.
基金Natural Science Foundation of China under Grant Nos.51178342 and 51578314
文摘Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
基金Project supported by Chinese State Key Project on Fundamental Research Planning (2007CB411304) Open Project of StateKey Laboratory of Deposit Geochemistry of Institute of Geochemistry, Chinese Academy of Sciences
文摘The alteration types of the large-scale Tsagaan Suvarga Cu-Mo porphyry deposit mostly comprise stockwork silicification, argillization, quartz-sericite alteration, K-silicate alteration, and propylitization. The mineralized and altered zones from hydrothermal metallogenic center to the outside successively are Cu-bearing stockwork silicification zone, Cu-beating argillized zone, Cu-Mo-bearing quartz-sericite alteration zone, Cu-Mo-bearing K-silicate alteration zone, and pro- pylitization zone. The K-silicate alteration occurred in the early phase, quartz-sericite alteration in the medium phase, and argillization and carbonatization (calcite) in the later phase. Ore-bearing-altered rocks are significantly controlled by the structure and fissure zones of different scales, and NE- and NW-trending fissure zones could probably be the migration pathways of the porphyry hydrothermal system. Results in this study indicated that the less the concentrations of REE, LREE, and HREE and the more the extensive fractionation between LREE and HREE, the closer it is to the center circulatory hydrothermal ore-forming and the more extensive silicification. The exponential relationship between the fractionation of LREE and HREE and the intensity of silicification and K-silicate alteration was found in the Cu-Mo deposit studied. The negative Eu anomaly, normal Eu, positive Eu anomaly and obviously positive Eu anomaly are coincident with the enhancement of Na2O and K2O concentrations gradually, which indicated that Eu anomaly would be significantly controlled by the alkaline metasomatism of the circulatory hydrothermal ore-forming system. Therefore, such characteristics as the positive Eu anomaly, the obvious fractionation between LREE and HREE and their related special alteration lithofacies are suggested to be metallogenic prognostic and exploration indications for Tsagaan Suvarga-style porphyry Cu-Mo deposits in Mongolia and China.
基金would like to extend their sincere gratitude for the financial support from the Integrated Key Precast Components and New Wood-bamboo Composite Structure Foundation of China(2017YFC0703502)the National Natural Science Foundation of China(51978152)the Fundamental Research Funds for the Central Universities(YJ202061).
文摘Cross-laminated bamboo(CLB)have a high strength to weight ratio and stable bidirectional mechanical properties.Inspired by the investigation on cross-laminated timber(CLT)rocking walls,CLB rocking walls with conventional friction dampers(CFDs)are studied in this paper.To investigate the mechanical properties of the CLB rocking wall,seven tests are conducted under a cyclic loading scheme,and different test parameters,including the existence of the CFDs,the moment ratio,and the loading times,are discussed.The test results show a bilinear behavior of the CLB rocking wall.The small residual displacements of the CLB rocking wall demonstrate an idealized self-centering capacity.The cumulative energy dissipation curves indicate that the energy dissipation capacity of the CLB rocking wall can be greatly improved with CFDs.The limit states of the CLB rocking wall under a lateral force are proposed based on the strains,stress,and damage level of the CLB material and posttensioned rebar.In addition,an analytical model of the CLB rocking wall is developed based on the proposed limit states of the CLB rocking wall to evaluate the hysteretic response of the CLB rocking wall,and the model is validated by the experimental data.The comparison results show the potential value of the analytical model for engineering design.
基金support received from National Key R&D Program of China(2019YFC1509304)Natural Science Foundation of China Grant No.52121005 and Natural Science Foundation of China Grant No.52108459.
文摘This paper proposes the novel concept of retrofitting damaged reinforced concrete frame with self-centering and energy-dissipating rocking wall.Parametric studies were carried out base on pushover and time-history analysis.In both pushover and time-history analysis,the soft-story mechanism was effectively mitigated through the rocking wall retrofit of the damaged structures.The results demonstrated that the stiffness and bearing capacity of the retrofitted system were improved compare to its intact state.Additionally,the seismic response of the damaged frame retrofitted using rocking wall in combination with post-tension and shear-type damper fell within the relevant design limits.Pushover analysis of the rocking wall indicated that there is a linear relationship between the wall thickness and the initial stiffness of the retrofitted system.The addition of post-tension tendon to the rocking wall system enables the wall to self-center and increases lateral stiffness and bearing capacity of the retrofitted system.When the shear-type damper was installed,the energy dissipation of the system was increased,and the stiffness and bearing capacity of the retrofitted system were also improved.In the time-history analysis,it was found that the thickness of the rocking wall is directly related to the maximum inter-story drift and the distribution patterns of inter-story drift of the frame.As the post-tension was added to the system,the maximum inter-story drift under rare earthquake excitation improved significantly.With the addition of shear-type dampers,the overall drift magnitude of the retrofitted system was fundamentally decreased.
基金funding provided by the International Joint Research Laboratory of Earthquake Engineering(ILEE)the Natural Sciences and Engineering Research Council(NSERC).
文摘Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structural engineering firm located in Vancouver(Canada)using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center(CCMC)/National Research Council Canada(NRC),is assessed.The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses.Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data.A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected.The ground motions were used in a series of incremental dynamic analyses(IDAs)to quantify the adjustable collapse margin ratio(ACMR)of the prototype balloon type CLT rocking shear walls.The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.
基金Open Access funding enabled and organized by CAUL and its Member Institutions.
文摘The application of unbonded post-tensioning (PT) in structural walls has led to the development of advanced self-centring (rocking) shear wall systems that has significant advantages, including accelerated construction due to the incorporation of prefabricated elements and segmental construction for different materials (e.g., concrete, masonry, and timber), reduced residual drifts, and little damage upon extreme seismic and wind loads. Concrete, masonry, and timber are often used for the construction of unbonded PT structural wall systems. Despite extensive research since the 1980s, there are no well-established design guidelines available on the shear wall configuration with the required energy dissipation system, joint’s locations and acceptance criteria for shear sliding, confinement, seismic performance factors, PT loss, PT force range and residual drifts of shear walls subjected to lateral loads. In this research a comprehensive state-of-the-art literature review was performed on self-centring shear wall system. An extensive study was carried out to collect a database of 100 concrete, masonry, and self-centring shear wall tests from the literature. The established database was then used to review shear walls’ configurations, material, and components to benchmark requirements applicable for design purposes. The behaviour of concrete, masonry and timber shear walls were compared and critically analysed. The general behaviour, force-displacement performance of the walls, ductility, and seismic response factors, were critically reviewed and analysed for different self-centring wall systems to understand the effect of different parameters including configurations of the walls, material used for construction of the wall (concrete, masonry, timber) and axial stress ratio. The outcome of this research can be used to better understand the behaviour of self-centring wall system in order to develop design guidelines for such walls.
文摘Post-tensioned concrete rocking walls might be used to avoid severe seismic damage at the base of structural walls, decrease residual drift, and lessen post-earthquake repair costs. The prediction of load-induced damage to the rocking wall resulting from seismic loading can provide an extremely valuable tool to evaluate the status and safety of structural concrete walls following earthquakes. In this study, the behavior and the damage state of monolithic, self-centering, rocking walls, as a new type of concrete rocking wall, are investigated. The nonlinear mechanical behavior of the wall is first modeled numerically, and subsequently the mechanical parameters from the numerical simulation are used to generate the local damage index. The results from the damage index model are compared with the full-scale test results, confirming the viability of the numerically based damage index method for estimating the seismically induced damage in concrete walls. Moreover, the estimated damage can be utilized as a qualitative and quantitative scale to assess the status of the wall following seismic loading events.Finally, an equation is proposed to estimate the repair cost based on the predicted damage state for the studied structural system.
基金The authors are grateful for the financial supports from the Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Nos.2019D12 and 2019D11)Open Foundation of State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University in China(No.SLDRCE19-01)+3 种基金Foundation of Public Welfare Technology Research Project of Zhejiang Province in China(No.LGF20E080013)Natural Science Foundation of Zhejiang Province,China(No.LY22E080003)Fundamental Research Fund for the Provincial Universities of Zhejiang(No.SJLZ2022003)Foundation of Public Welfare Technology Research Project of Ningbo in China,(Nos.2022S170,2022S179).
文摘Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attentions to researchers recently.However,it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor(DCF)for entire systems rationally and efficiently.In this paper,a design method has been exploited for seismic retrofitting of existing RFs using PWs(RF-PWs)via a multi-objective evolutionary algorithm.Then,the method has been investigated and verified through a practical project.Finally,a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method.To sum up,the findings of this investigation show that the method furnished in this paper is feasible,functional and can provide adequate information for determining the stiffness demand and the value of the DCFfor PWs.Furthermore,it can be applied for the preliminary design of these kinds of structures.