期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection 被引量:3
1
作者 Zhenlin Xue Haikuan Sun +2 位作者 Deqing Gan Zepeng Yan Zhiyi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1515-1523,共9页
Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the ... Wall slip is a microscopic phenomenon of cemented paste backfill(CPB)slurry near the pipe wall,which has an important influence on the form of slurry pipe transport flow and velocity distribution.Directly probing the wall slip characteristics using conventional experimental methods is difficult.Therefore,this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry(PIV)and analyzed the effects of slurry temperature,pipe diameter,solid concentration,and slurry flow on the wall slip velocity of the CPB slurry,which refined the theory of the effect of wall slip characteristics on pipeline transport.The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip.High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect.Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern.The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity.The slip velocity value increased from 0.025 to 0.056 m·s^(-1)when the solid content improved from 55wt%to 65wt%.When slurry flow increased,the CPB slurry flocculation structure changed,which affected the slip velocity,and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m^(3)·h^(-1).The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline. 展开更多
关键词 particle image velocimetry cemented paste backfill noncontact experimental platform wall slip behavior pipeline transportation
下载PDF
Flow behavior in microchannel made of different materials with wall slip velocity and electro-viscous effects 被引量:5
2
作者 Lei Wang Jiankang Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期73-80,共8页
In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to... In a microfluidic system, flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in a microchannel. The flow-electricity interaction in a complex microfluidic system subjected to joint action of wall slip and electro-viscous effect is an important topic. This paper presents an analytic solution of pressuredriven liquid flow velocity and flow-induced electric field in a two-dimensional microchannel made of different materials with wall slip and electro-viscous effects. The Poisson- Boltzmann equation and the Navier-Stokes equation are solved for the analytic solutions. The analytic solutions agree well with the numerical solutions. It was found that the wall slip amplifies the fow-induced electric field and enhances the electro-viscous effect on flow. Thus the electro-viscous effect can be significant in a relatively wide microchannel with relatively large kh, the ratio of channel width to thickness of electric double layer, in comparison with the channel without wall slip. 展开更多
关键词 MICROCHANNEL wall slip - Electro-viscous effects
下载PDF
Influence of wall slip on the hydrodynamic behavior of a two-dimensional slider bearing 被引量:2
3
作者 G. J. Ma C. W. Wu P. Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期655-661,共7页
In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length sli... In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider bearing with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface), there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrodynamic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower initial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag. 展开更多
关键词 wall slip Slider beating Multi-linearity method Quadratic programming
下载PDF
Numerical Simulation of Twin-Screw Extrusion with Wall Slip 被引量:3
4
作者 胡冬冬 陈晋南 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期85-89,共5页
Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFL... Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt. 展开更多
关键词 wall slip slip coefficient numerical simulation twin-screw extrusion
下载PDF
Phase Behaviors in Bi-phase Simulation of Powder Segregation in Metal Injection Molding 被引量:1
5
作者 柳葆生 范小欣 成志强 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期363-371,共9页
Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe ... Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs. 展开更多
关键词 Viscous behaviors Bi-phases simulation Powder segregation Metal injection molding wall slip
下载PDF
Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
6
作者 Chun-Hong Yang Yong-Jun Jian 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期308-314,共7页
A fully developed electromagnetohydrodynamic(EMHD) flow through a microchannel with patterned hydrodynamic slippage on the channel wall is studied. The flow is driven by the Lorentz force which originates from the int... A fully developed electromagnetohydrodynamic(EMHD) flow through a microchannel with patterned hydrodynamic slippage on the channel wall is studied. The flow is driven by the Lorentz force which originates from the interaction between an externally imposed lateral electric field and a perpendicular magnetic field. The governing equations for the velocity with patterned slip boundary conditions are solved analytically by perturbation techniques under the assumption of small Reynolds number Re. In addition, the numerical solutions for the velocity are obtained by using the finite-difference method, and they are found to be in good agreement with the analytical solutions within admissible parameter range. The effects of different parameters on the velocity and volume flow rate due to patterned hydrodynamic slippage are discussed in detail, including wave-number K, Hartmann number Ha, amplitude δ of the patterned slip length, and normalized electric field strength S. The results show that patterned slippage over microchannel walls can induce transverse flows, which will increase the mixing rates in microfluidic devices. In addition, we also find that precise flow control can be achieved by controlling the magnetic flux and the wave-number and also by well choosing the electric field intensity. Our analysis can be used for designing the efficient micro-fluidic mixers. 展开更多
关键词 electromagnetohydrodynamic(EMHD)flow patterned slip wall
下载PDF
The squeeze flow of a bi-viscosity fluid between two rigid spheres with wall slip
7
作者 Tianyi Zhou Da Lin +3 位作者 Yujia Shen Wei Yang Chunhui Xu Xuedong Chen 《Particuology》 SCIE EI CAS CSCD 2023年第8期153-160,共8页
In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results ... In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip. 展开更多
关键词 Squeeze flow Bi-viscosity fluid Rigid spheres wall slip
原文传递
The lubrication performance of water lubricated bearing with consideration of wall slip and inertial force 被引量:4
8
作者 解忠良 塔娜 饶柱石 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第1期52-60,共9页
The lubrication mechanism and the performance parameters with consideration of wall slip and inertial force are studied in this paper. Based on the modified Reynolds equation, the finite difference method is used to s... The lubrication mechanism and the performance parameters with consideration of wall slip and inertial force are studied in this paper. Based on the modified Reynolds equation, the finite difference method is used to study the lubrication mechanism and the performance. Effects of the wall slip and the inertial force on the performance parameters are obtained, and found in good agreement with the results of FLUENT. It is shown that the wall slip and the inertial force do not significantly change the distribution of the pressure, the load capacity and the friction force. The inertial force slightly increases the pressure and the load capacity by 1.2% and 4.8%, while the wall slip reduces them by 8.0% and 17.85%. The wall slip and the inertial force increase the friction by about 15.98%, 2.33%, respectively. Compared with the wall slip, the inertial force is smaller, but cannot be neglected. 展开更多
关键词 Water lubricated bearing wall slip inertial force effect lubrication performance
原文传递
PERIODICAL PRESSURE-DRIVEN FLOWS IN MICROCHANNEL WITH WALL SLIP VELOCITY AND ELECTRO-VISCOUS EFFECTS 被引量:2
9
作者 WANG Lei WU Jian-kang 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第6期829-837,共9页
In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjec... In a microfluidic system, the flow slip velocity on a solid wall can be the same order of magnitude as the average velocity in the microchannel. The flow-electricity interaction in a complex microfluidic system subjected to a joint action of wall slip and electro-viscosity is an important topic. An analytical solution for the periodical pressure-driven flow in a two-dimensional uniform microchannel, with consideration of wall slip and electro-viscous effect is obtained based on the Poisson-Boltzmann equation for the Electric Double Layer (EDL) and the Navier-Stokes equations for the liquid flow. The analytic solutions agree well with the numerical solutions. The analytical results indicate that the periodical flow velocity and the Flow-Induced Electric Field (FIEF) strongly depend on the frequency Reynolds number (Re = (wh2/v ), that is a function of the frequency, the channel size and the kinetic viscosity of fluids. For Re 〈 1, the flow velocity and the FIEF behave similarly to those in a steady flow, whereas they decrease rapidly with Re as Re 〉 1. In addition, the electro-viscous effect greatly influences the periodical flow velocity and the FIEF, particularly, when the electrokinetic radius kH is small. Furthermore, the wall slip velocity amplifies the FIEF and enhances the electro-viscous effect on the flow. 展开更多
关键词 electrokinetic flow frequency Reynolds number wall slip electro-viscous effects Flow-Induced Electric Field (FIEF)
原文传递
Numerical Simulation of Flow Characteristics in Micro Shock Tubes 被引量:2
10
作者 Guang Zhang Toshiaki Setoguchi Heuy Dong Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第3期246-253,共8页
Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tube... Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations. 展开更多
关键词 Micro shock tube Shock wave propagation Slip wall Unsteady flow CFD
原文传递
Complementarity of CFD,experimentation and reactor models for solving challenging fluidization problems 被引量:4
11
作者 John R. Grace Tingwen Li 《Particuology》 SCIE EI CAS CSCD 2010年第6期498-500,共3页
Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptio... Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given, Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions. 展开更多
关键词 Fluidization Mixing Computational Fluid dynamics wall slip Reactor modelling Volume change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部