The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme...The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.展开更多
The paper introduces a new type of green building which suits for the construction of rural dwellings in Xinjiang, China. Results of the shaking table test on building model show that the single-layer gypsum-adobe str...The paper introduces a new type of green building which suits for the construction of rural dwellings in Xinjiang, China. Results of the shaking table test on building model show that the single-layer gypsum-adobe structure has better seismic performance. And it also analyzes the construction features and engineering practice, which means that it is significant to extend this type of building to the drier regions in China.展开更多
This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All the...This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All these defects prevent the passive solar houses' further development. This paper chooses trombe wall,which has higher thermal efficiency of the passive solar house,as research object. The traditional vent is improved into a new type of ventilation device. This improvement overcomes the shortcoming,which traditional vent loses huge heat,and simplifies the construction of vent. Comparing with traditional trombe wall,the energy saving rate is 15. 69%.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energ...Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energy-saving technologies,energy consumption in water supply and drainage projects can be significantly minimized and wastage of water resources can be reduced.This will play a very promising role in promoting sustainable development of resources and environmental conservation in the modern era.This paper analyzes the application of energy-saving technology in building water supply and drainage construction,with an aspiration to make energy-saving technology more reasonable in today’s building water supply and drainage projects and to improve the quality of water supply and drainage construction projects,while achieving effective environmental protection.展开更多
A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of ...A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
基金National Natural Science Foundation of China(Grant Nos.51908188 and 51938011).
文摘The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens.
基金Science and Technology Key Projects of the Construction Department of Xinjiang Uygur Autonomous Region
文摘The paper introduces a new type of green building which suits for the construction of rural dwellings in Xinjiang, China. Results of the shaking table test on building model show that the single-layer gypsum-adobe structure has better seismic performance. And it also analyzes the construction features and engineering practice, which means that it is significant to extend this type of building to the drier regions in China.
基金Sponsored by the National Science-Technology Support Plan Projects (Grant No.2011BAJ08B06-2)
文摘This paper aims at solving the problems of low thermal collection rate,inconvenient maintenance,hindering indoor using during the application of passive solar technologies in rural houses in severe cold region.All these defects prevent the passive solar houses' further development. This paper chooses trombe wall,which has higher thermal efficiency of the passive solar house,as research object. The traditional vent is improved into a new type of ventilation device. This improvement overcomes the shortcoming,which traditional vent loses huge heat,and simplifies the construction of vent. Comparing with traditional trombe wall,the energy saving rate is 15. 69%.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘Under the increasing demands as well as resource shortages in today’s society,energy-saving technologies in building water supply and drainage construction plays a vital role.Through the rational application of energy-saving technologies,energy consumption in water supply and drainage projects can be significantly minimized and wastage of water resources can be reduced.This will play a very promising role in promoting sustainable development of resources and environmental conservation in the modern era.This paper analyzes the application of energy-saving technology in building water supply and drainage construction,with an aspiration to make energy-saving technology more reasonable in today’s building water supply and drainage projects and to improve the quality of water supply and drainage construction projects,while achieving effective environmental protection.
文摘A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.