中国区域电网间能源分布不均衡,要将大型能源基地的电能进行大容量远距离传输,因此,计算大型互联电网可用输电能力(available transfer capability,ATC)十分必要。然而,由于完整数据收集较为困难,大型互联电网的ATC无法直接计算。针对...中国区域电网间能源分布不均衡,要将大型能源基地的电能进行大容量远距离传输,因此,计算大型互联电网可用输电能力(available transfer capability,ATC)十分必要。然而,由于完整数据收集较为困难,大型互联电网的ATC无法直接计算。针对上述问题,提出种大型互联电网ATC的分解计算法。其基本原理是:按照自然分区,将大型互联电网划分为若干可直接计算出ATC的子系统,然后,根据子系统间的串联或并联关系,基于已得到子系统的ATC间接计算大型互联电网的ATC。分别建立了串、并联确定性ATC与概率性ATC的计算模型;在计算子系统ATC时,运用了Ward等值思想对其余系统进行等效,可有效处理子系统间复杂连接的情况。算例结果验证了所提计算原理的正确性和计算方法的可行性。展开更多
文摘中国区域电网间能源分布不均衡,要将大型能源基地的电能进行大容量远距离传输,因此,计算大型互联电网可用输电能力(available transfer capability,ATC)十分必要。然而,由于完整数据收集较为困难,大型互联电网的ATC无法直接计算。针对上述问题,提出种大型互联电网ATC的分解计算法。其基本原理是:按照自然分区,将大型互联电网划分为若干可直接计算出ATC的子系统,然后,根据子系统间的串联或并联关系,基于已得到子系统的ATC间接计算大型互联电网的ATC。分别建立了串、并联确定性ATC与概率性ATC的计算模型;在计算子系统ATC时,运用了Ward等值思想对其余系统进行等效,可有效处理子系统间复杂连接的情况。算例结果验证了所提计算原理的正确性和计算方法的可行性。