New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed lar...New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed large L/D multi-region model links three-dimensional axisymmetric high strain high strain-rate hydrocode analyses with the conventional set of Picatinny Arsenal FRAGmentation(PAFRAG)simulation routines.The standard PAFRAG modeling technique is based on the Mott's theory of break-up of idealized cylindrical"ring-bombs",in which the length of the average fragment is a function of the radius and velocity of the shell at the moment of break-up,and the mechanical properties of the metal.In the newly developed multi-region model,each of the shell region,the break-up is assumed to occur instantaneously,whereas the entire shell is modeled to fragment at multiple times,according to the number of the regions considered.According to PAFRAG methodology,the required input for both the natural and the controlled fragmentation models including the geometry and the velocity of the shell at moment of break-up had been provided from the hydrocode analyses and validated with available experimental data.The newly developed large L/D multi-region PAFRAG model has been shown to accurately reproduce available experimental fragmentation data.展开更多
There has been increasing interest in numerical simulations of fragmentation of expanding warheads in 3D.Accordingly there is a pressure on developers of leading commercial codes,such as LS-DYNA.AUTODYN and IMPETUS Af...There has been increasing interest in numerical simulations of fragmentation of expanding warheads in 3D.Accordingly there is a pressure on developers of leading commercial codes,such as LS-DYNA.AUTODYN and IMPETUS Afea.to implement the reliable fracture models and the efficient solution techniques.The applicability of the Johnson—Cook strength and fracture model is evaluated by comparing the fracture behaviour of an expanding steel casing of a warhead with experiments.The numerical codes and different numerical solution techniques,such as Eulerian,Lagrangian.Smooth particle hydrodynamics(SPH).and the corpuscular models recently implemented in IMPETUS Afea are compared.For the same solution techniques and material models we find that the codes give similar results.The SPH technique and the corpuscular technique are superior to the Eulerian technique and the Lagrangian technique(with erosion) when it is applied to materials that have fluid like behaviour such as the explosive and the tracer.The Eulerian technique gives much larger calculation time and both the Lagrangian and Eulerian techniques seem to give less agreement with our measurements.To more correctly simulate the fracture behaviours of the expanding steel casing,we applied that ductility decreases with strain rate.The phenomena may be explained by the realization of adiabatic shear bands.An implemented node splitting algorithm in IMPETUS Afea seems very promising.展开更多
Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the materi...Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.展开更多
文摘New advanced numerical computer model enabling accurate simulation of fragmentation parameters of large Length over Diameter(L/D)explosively driven metal shells has been developed and validated.The newly developed large L/D multi-region model links three-dimensional axisymmetric high strain high strain-rate hydrocode analyses with the conventional set of Picatinny Arsenal FRAGmentation(PAFRAG)simulation routines.The standard PAFRAG modeling technique is based on the Mott's theory of break-up of idealized cylindrical"ring-bombs",in which the length of the average fragment is a function of the radius and velocity of the shell at the moment of break-up,and the mechanical properties of the metal.In the newly developed multi-region model,each of the shell region,the break-up is assumed to occur instantaneously,whereas the entire shell is modeled to fragment at multiple times,according to the number of the regions considered.According to PAFRAG methodology,the required input for both the natural and the controlled fragmentation models including the geometry and the velocity of the shell at moment of break-up had been provided from the hydrocode analyses and validated with available experimental data.The newly developed large L/D multi-region PAFRAG model has been shown to accurately reproduce available experimental fragmentation data.
文摘There has been increasing interest in numerical simulations of fragmentation of expanding warheads in 3D.Accordingly there is a pressure on developers of leading commercial codes,such as LS-DYNA.AUTODYN and IMPETUS Afea.to implement the reliable fracture models and the efficient solution techniques.The applicability of the Johnson—Cook strength and fracture model is evaluated by comparing the fracture behaviour of an expanding steel casing of a warhead with experiments.The numerical codes and different numerical solution techniques,such as Eulerian,Lagrangian.Smooth particle hydrodynamics(SPH).and the corpuscular models recently implemented in IMPETUS Afea are compared.For the same solution techniques and material models we find that the codes give similar results.The SPH technique and the corpuscular technique are superior to the Eulerian technique and the Lagrangian technique(with erosion) when it is applied to materials that have fluid like behaviour such as the explosive and the tracer.The Eulerian technique gives much larger calculation time and both the Lagrangian and Eulerian techniques seem to give less agreement with our measurements.To more correctly simulate the fracture behaviours of the expanding steel casing,we applied that ductility decreases with strain rate.The phenomena may be explained by the realization of adiabatic shear bands.An implemented node splitting algorithm in IMPETUS Afea seems very promising.
文摘Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.