Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from ...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.展开更多
Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the...Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the starting region of China’s climate change,the Qinghai-Tibet Plateau is extremely sensitive to climate change.The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates(NGHs)resources.Under the background of global warming,whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community.Given this,this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau.Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau,this study investigated the changes in the response of the NGHs to global warming,aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau.A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau.Over the past decades,the increase in the mean annual air temperature of the plateau was increasingly high and more recently.Specifically,the mean annual air temperature of the plateau changed at a rate of approximately 0.308-0.420℃/10a and increased by approximately 1.54-2.10℃in the past decades.Moreover,the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155-1.575℃and the permafrost area decreased by approximately 0.34×10^(6)km^(2) from about 1.4×10^(6)km^(2) to 1.06×10^(6)km^(2) in the past decades.As indicated by simulated calculation results,the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29-39 m in the past 50 years,with the equivalent of(1.69-2.27)×10^(10)-(1.12-1.51)×10^(12)m^(3) of methane(CH_(4))being released due to NGHs dissociation.It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m,and dissociated and released NGHs will be the equivalent of(1.34-88.8)×10^(10)m^(3) and(1.57-104)×10^(10)m^(3)of CH_(4),respectively by 2030 and 2050.Considering the positive feedback mechanism of NGHs on global warming and the fact that CH_(4) has a higher greenhouse effect than carbon dioxide,the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH_(4) into the atmosphere,which is an important trend of NGHs under the background of global warming.Therefore,the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality.Accordingly,this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau,accelerate research on the techniques and equipment for NGHs extraction,storage,and transportation,and exploit the permafrost-associated NGHs while thawing them.The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect,thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.展开更多
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be ...Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.展开更多
This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indic...This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.展开更多
Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate...Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.展开更多
Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal ...Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal matrix in an adsorbed state.The CO_(2)adsorption process is hence considered one of the more efective methodologies in environmental sciences.Thus,adsorption isotherm measurements and modelling are key important scientifc measures required in understanding the adsorption system,mechanism,and process optimization in coalbeds.In this paper,three renowned and reliable adsorption isotherm models were employed including Langmuir,Freundlich,and Temkin for pure CO_(2)adsorption data,and the extended-Langmuir model for multicomponent,such as fue gas mixture-adsorption data as investigated in this research work.Also,signifcant thermodynamics properties including the standard enthalpy change(ΔH°),entropy change(ΔS°),and Gibbs free energy(ΔG°)were assessed using the van’t Hof equation.The statistical evaluation of the goodness-of-ft was done using three(3)statistical data analysis methods including correlation coefcient(R^(2)),standard deviation(σ),and standard error(SE).The Langmuir isotherm model accurately represent the pure CO_(2)adsorption on the coals than Freundlich and Temkin.The extended Langmuir gives best experimental data ft for the fue gas.The thermodynamic evaluations revealed that CO_(2)adsorption on the South African coals is feasible,spontaneous,and exothermic;and the adsorption mechanism is a combined physical and chemical interaction between the adsorbate and the adsorbent.展开更多
There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operatio...There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operations at deeper and more remoteareas of mines,the efficient recovery and utilization of Coal Mine Methane:(CMM) is animportant issue in improving and stabilizing the productivity in the coal mining industry withhigh levels of gas,where the incidence of gas outbursts is increasing.We plan to studyvarious aspects of the development of production technology and characteristics of themine site.This is to establish the technology for highly efficient coproduction coal and gasoperation rate.As a result,the productivity at the coal mine face will increase due to thereduction in gas emissions in the mining face.Effective use of recovered gas can be expectedto reduce global warming by reducing the amount of coal mine methane gas emissionin the air.展开更多
This work deals with the multi-faceted impact of gas flaring on a global scale and the different approach employed by researchers to measure gas flared and its resulting emissions. It gives an overview of methods empl...This work deals with the multi-faceted impact of gas flaring on a global scale and the different approach employed by researchers to measure gas flared and its resulting emissions. It gives an overview of methods employed by these researchers in the oil and gas industry, academia and governments in attempt to determine ways of measuring and reducing gas flaring and its emission drastically. This approach so far includes analytical studies, numerical studies, modeling, computer simulations, etc. the goal behind each study being to mitigate the effects of gas flaring. The outcome indicates that there is a seemingly absence of a single global method, emission factor and estimation procedure used in the oil and gas industry all over the world to determine the volume of gas flared and its emissions be it from complete or incomplete combustion, sweet or sulphur present hydrocarbons and this poses a continuous problem in determining the actual impact of gas flaring and its emissions on human and its role in environmental degradation both at a local and global level. An attempt has also being made to cover up-to-date trends in gas flaring and current developments in some of the most flared countries.展开更多
Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillatio...Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation(NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario(the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.展开更多
The major emission sources of carbon dioxide, methane, nitrous oxide and CFCs in China have been identified, and the emission trends has been estimated. Besides fossil fuel combustion, human respiration and biomass bu...The major emission sources of carbon dioxide, methane, nitrous oxide and CFCs in China have been identified, and the emission trends has been estimated. Besides fossil fuel combustion, human respiration and biomass burning are important sources. Some feasible abatement measures on energy conservation, afforestation and biomass recycling have been discussed.展开更多
The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas,...The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas, some investors are beginning to lose patience and confidence in CSG. China currently faces the following question: Should the government continue to vigorously support the development of the CSG industry? To provide a reference for policy makers and investors, this paper calculates the EROI_(stnd)[a standardized energy return on investment(EROI) method], EROI_(ide)(the maximum theoretical EROI), EROI_(3,i)(EROI considering the energy investment in transport), and EROI_(3,1+e)(EROI with environmental inputs) of a single vertical CSG well in the Fanzhuang CSG project in the Qinshui Basin. The energy payback time(EPT) and the greenhouse gas(GHG) emissions of the CSG systems are also calculated. The results show that over a 15-year lifetime, EROI_(stnd), EROI_(ide), EROI_(3,1), and EROI_(3,1+e)are expected to deliver EROIs of approximately11:1, 20:1, 7:1, and 6:1, respectively. The EPT within different boundaries is no more than 2 years, and the life-cycle GHG emissions are approximately 18.8 million kg CO_2 equivalent. The relatively high EROI and short EPT indicate that the government should take more positive measures to promote the development of the CSG industry.展开更多
The global warming potential (GWP) and global temperature potential (GTP) are two common metrics to calculate the CO2 equivalent of greenhouse gases (GHGs). If the country's GHG emissions are calculated with GTP i...The global warming potential (GWP) and global temperature potential (GTP) are two common metrics to calculate the CO2 equivalent of greenhouse gases (GHGs). If the country's GHG emissions are calculated with GTP instead of GWP, the shares of the EU, USA, Japan, Canada and South Africa rise in the period 1990-2005, and those of Brazil, Australia, China, India, Mexico and Russia decrease. From 2015 to 2030, the projected shares of the EU, USA, Japan and China will increase, but those of Russia, Canada, Australia, India, Mexico and Brazil will decrease. The reduced shares of Brazil and Australia and increased share of the EU might be one of the important reasons that Brazil and Australia suggested to adopt GTP instead of GWP as early as possible, but the EU opposed it.展开更多
Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworth...Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworthy that cropping practices decided to increase or decrease grain yield, and reduce or promote greenhouse gas emissions. In this study, a meta-analysis was conducted to quantify the effects of rice basic seedlings (BS) on the global warming potential (GWP) of GHG emissions at the yield-scale in China. The results suggested that significant difference was observed in yield-scaled GWP of BS. The lowest yield-scaled GWP occurred at 80-100 BS (415.65 kg CO2 equiv/mg). The yield-scaled GHG emission from high to low was that of the hybrid rice varieties (1 028.86 kg CO2 equiv/mg), the conventional rice varieties (634.15 kg CO2 equiv/mg) and the super rice varieties (576.57 kg CO2 equiv/mg). Consequently, the model of conventional rice varieties and super rice varieties at 80-100 BS could be a scientifc method of matching inthe rice cropping system. A further assessment of rice density and variety impacts on GHG emissions at yield-scale was urgently needed to develop, so as to achieve win-win policies of rice production for higher yield with lower emissions.展开更多
The persistent rise in concentrations of greenhouse gases (GHGs) in the earth’s atmosphere is responsible for global warming and climate change. Besides the known source of GHGs emissions like energy, industry, and a...The persistent rise in concentrations of greenhouse gases (GHGs) in the earth’s atmosphere is responsible for global warming and climate change. Besides the known source of GHGs emissions like energy, industry, and agriculture, intrinsic emissions from natural inland water bodies like wetland, rivers, reservoirs, estuaries, etc. have also been identified as other hotspots of GHGs emission and gaining the attention of the scientific communities in recent times. Inland fisheries in India are threatened by climate changes such as a change in temperature, precipitation, droughts, storm, sea-level rise, saltwater intrusion, floods that affect mostly the production, productivity and ultimately affect the fishers’ livelihood. There are, however, different mitigation and adaptation strategies to cope with the effects of climate change. Carbon sequestration and other related management interventions are one of the options available minimizing GHGs emissions from inland open waters, particularly the wetlands and coastal mangroves which are well known worldwide for their significant role in the storage of carbon. Assessment of C efflux from exposed sediments in dry streams, reservoirs, lakes, rivers, and ponds into the atmosphere can be considered imperative for a better understanding of their role as a C-sink or as a C-source to the atmosphere.展开更多
Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method...Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method,the physical and mathematical models are developed to simulate the hydrate dissociation.The mathematical model can be used to analyze the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,the convection and conduction on the hydrate dissociation and gas and water production.The mechanism of gas production by the combination of warm water flooding and depressurization is revealed by the numerical simulation.The evolutions of such physical variables as pressure,temperature,saturations and gas and water rates are analyzed.Numerical results show that under certain conditions the combination method has the advantage of longer stable period of high gas rate than the single producing method.展开更多
A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was develo...A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter. This is a combination of the surface and deep bed filtering processes. A set of facilities was established and a series of cold model tests were carried out. The dust removal efficiency and the pressure drop of the filter were measured and analyzed. The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency. Meanwhile, the granules moving downward cleans the cake on the screen surface, so that the system is operated at steady state.展开更多
Continuous emissions of anthropogenic greenhouse gases(GHGs)and aerosols in the last 160 years have resulted in an increasing trend of global mean surface temperatures(GMSTs).Due to interactions with natural variabili...Continuous emissions of anthropogenic greenhouse gases(GHGs)and aerosols in the last 160 years have resulted in an increasing trend of global mean surface temperatures(GMSTs).Due to interactions with natural variability,rates of the combined anthropogenically and naturally induced warming trends are characterized by significant slowdowns and speedups on decadal timescales.Here,by analyzing observed and model-simulated data,we investigate how the duration of these episodes will change with different strengths of GHG and aerosol forcing.We found that the duration of warming slowdowns can be more than 30 yr with a slower rate of anthropogenic emissions but would shorten to about 5 yr with a higher one.This duration reduction depends on both the magnitude of the climate response to anthropogenic forcing and the strength of the internal variability.Moreover,the warming slowdowns can still occur even towards the end of this century under high emissions scenarios but with significantly shortened duration.展开更多
Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming eff...Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.展开更多
The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, wh...The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, which works in a semi-dry mode, the water is injected in the form of spray to maximum its contact surface with the gas. The criteria for the design of the water nozzles would be nigh water concentration but no liquid impinging on the solid wall and complete evaporation inside the tower. In order to optimize the atomizer design, the effects of the spray type (hollow or solid cone), their initial droplet she distribution and water flow rate on the performance of the acid gas absorption were investigated. The liquid behaviour was studied with a fluid dynamic simulation code, and the overall performance was checked experimentally. This paper presents the use of a commercial CFD code, FLUENT, and some modifications made during such investigation. The modification includes the viscosity of the flue gas defined as a function of the temperature, and the initial mass fraction of different droplet size group described with an exponential distribution formula of Rosin-Rammler. The investigation results (the optimal spray parameters) were used to guide the water nozzle design. The general performance of the flue gas clean-up system measured during the plant operation complied with the design criteria.展开更多
In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling me...In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling method. The system includes the solid start cartridge,pressure-amplified tank with liquid monopropellant, liquid regulator, gas generator, and pipes.The one-dimensional finite-element state-variable model is applied to the pipes and the lumped parameter method is adopted for the other modules. The variations of the system operation parameters over time during the startup, steady-state, and pulsing operational processes are obtained from the transient model, and the characteristics of starting time changing with different system parameters are also analyzed. It is shown that the system startup process can be divided into three distinct processes. The starting time monotonically changes with variations of the liquid regulator parameters, first decreasing and then increasing with the mass change of the solid propellant charge of the start cartridge, initial gas cavity volume of the pressure amplified tank and initial gas cushion of the propellant tank. The starting time can be reduced to less than 1.0 s(0.68–0.75 s for the current system). For meeting the deviation requirements of ±10% of the steady-state propellant tank pressure, the positive deviation requirement is assured by the self-locking pressure and the negative deviation can be assured within an allowable maximum propellant tank volume flowrate(1.6 times the design value for the proposed system) for downstream thrusters for a designed system. The results from the simulation are useful as a guide for further system design and testing.展开更多
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China under Contract No. 20576087.
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.
基金supported by the projects of the China Geological Survey(DD20190102,DD20221857).
文摘Global warming and the response to it have become a topic of concern in today’s society and are also a research focus in the global scientific community.As the world’s third pole,the global warming amplifier,and the starting region of China’s climate change,the Qinghai-Tibet Plateau is extremely sensitive to climate change.The permafrost on the Qinghai-Tibet Plateau is rich in natural gas hydrates(NGHs)resources.Under the background of global warming,whether the NGHs will be disassociated and enter the atmosphere as the air temperature rises has become a major concern of both the public and the scientific community.Given this,this study reviewed the trend of global warming and accordingly summarized the characteristics of the temperature increase in the Qinghai-Tibet Plateau.Based on this as well as the distribution characteristics of the NGHs in the permafrost on the Qinghai-Tibet Plateau,this study investigated the changes in the response of the NGHs to global warming,aiming to clarify the impacts of global warming on the NGHs in the permafrost of the plateau.A noticeable response to global warming has been observed in the Qinghai-Tibet Plateau.Over the past decades,the increase in the mean annual air temperature of the plateau was increasingly high and more recently.Specifically,the mean annual air temperature of the plateau changed at a rate of approximately 0.308-0.420℃/10a and increased by approximately 1.54-2.10℃in the past decades.Moreover,the annual mean ground temperature of the shallow permafrost on the plateau increased by approximately 1.155-1.575℃and the permafrost area decreased by approximately 0.34×10^(6)km^(2) from about 1.4×10^(6)km^(2) to 1.06×10^(6)km^(2) in the past decades.As indicated by simulated calculation results,the thickness of the NGH-bearing permafrost on the Qinghai-Tibet Plateau has decreased by 29-39 m in the past 50 years,with the equivalent of(1.69-2.27)×10^(10)-(1.12-1.51)×10^(12)m^(3) of methane(CH_(4))being released due to NGHs dissociation.It is predicted that the thickness of the NGH-bearing permafrost will decrease by 23 m and 27 m,and dissociated and released NGHs will be the equivalent of(1.34-88.8)×10^(10)m^(3) and(1.57-104)×10^(10)m^(3)of CH_(4),respectively by 2030 and 2050.Considering the positive feedback mechanism of NGHs on global warming and the fact that CH_(4) has a higher greenhouse effect than carbon dioxide,the NGHs in the permafrost on the Qinghai-Tibet Plateau will emit more CH_(4) into the atmosphere,which is an important trend of NGHs under the background of global warming.Therefore,the NGHs are destructive as a time bomb and may lead to a waste of efforts that mankind has made in carbon emission reduction and carbon neutrality.Accordingly,this study suggests that human beings should make more efforts to conduct the exploration and exploitation of the NGHs in the permafrost of the Qinghai-Tibet Plateau,accelerate research on the techniques and equipment for NGHs extraction,storage,and transportation,and exploit the permafrost-associated NGHs while thawing them.The purpose is to reduce carbon emissions into the atmosphere and mitigate the atmospheric greenhouse effect,thus contributing to the global goal of peak carbon dioxide emissions and carbon neutrality.
基金financed by Shanxi Province Science and Technology Major Projects of MH2015-06
文摘Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.
基金supported by the UK– China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) of China, as part of the Newton Fundsupported by the UK National Centre for Atmospheric Science–Climate (NCAS– Climate) at the University of Reading
文摘This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface wanning, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Train), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964- 93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol- radiation and aerosol-cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere-land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.
基金sponsored by the National Natural Science Foundation of China,China(Grant Nos.31470529,32125027)Zhejiang A&F University Research and Development Fund,China(Nos.2022LFR006,2021LFR060).
文摘Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.
基金Acknowledgements The authors acknowledge the National Research Foundation(NRF)of South Africa for the fnancial support provided to undertake this research successfully.
文摘Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal matrix in an adsorbed state.The CO_(2)adsorption process is hence considered one of the more efective methodologies in environmental sciences.Thus,adsorption isotherm measurements and modelling are key important scientifc measures required in understanding the adsorption system,mechanism,and process optimization in coalbeds.In this paper,three renowned and reliable adsorption isotherm models were employed including Langmuir,Freundlich,and Temkin for pure CO_(2)adsorption data,and the extended-Langmuir model for multicomponent,such as fue gas mixture-adsorption data as investigated in this research work.Also,signifcant thermodynamics properties including the standard enthalpy change(ΔH°),entropy change(ΔS°),and Gibbs free energy(ΔG°)were assessed using the van’t Hof equation.The statistical evaluation of the goodness-of-ft was done using three(3)statistical data analysis methods including correlation coefcient(R^(2)),standard deviation(σ),and standard error(SE).The Langmuir isotherm model accurately represent the pure CO_(2)adsorption on the coals than Freundlich and Temkin.The extended Langmuir gives best experimental data ft for the fue gas.The thermodynamic evaluations revealed that CO_(2)adsorption on the South African coals is feasible,spontaneous,and exothermic;and the adsorption mechanism is a combined physical and chemical interaction between the adsorbate and the adsorbent.
文摘There are many problems in terms of safe coal production and the sound developmentof the coal industry.Accompanying the intensification and increasing efficiencyof coal production and the conducting of mining operations at deeper and more remoteareas of mines,the efficient recovery and utilization of Coal Mine Methane:(CMM) is animportant issue in improving and stabilizing the productivity in the coal mining industry withhigh levels of gas,where the incidence of gas outbursts is increasing.We plan to studyvarious aspects of the development of production technology and characteristics of themine site.This is to establish the technology for highly efficient coproduction coal and gasoperation rate.As a result,the productivity at the coal mine face will increase due to thereduction in gas emissions in the mining face.Effective use of recovered gas can be expectedto reduce global warming by reducing the amount of coal mine methane gas emissionin the air.
文摘This work deals with the multi-faceted impact of gas flaring on a global scale and the different approach employed by researchers to measure gas flared and its resulting emissions. It gives an overview of methods employed by these researchers in the oil and gas industry, academia and governments in attempt to determine ways of measuring and reducing gas flaring and its emission drastically. This approach so far includes analytical studies, numerical studies, modeling, computer simulations, etc. the goal behind each study being to mitigate the effects of gas flaring. The outcome indicates that there is a seemingly absence of a single global method, emission factor and estimation procedure used in the oil and gas industry all over the world to determine the volume of gas flared and its emissions be it from complete or incomplete combustion, sweet or sulphur present hydrocarbons and this poses a continuous problem in determining the actual impact of gas flaring and its emissions on human and its role in environmental degradation both at a local and global level. An attempt has also being made to cover up-to-date trends in gas flaring and current developments in some of the most flared countries.
基金Supported by the China National Global Change Major Research Project(No.2013CB956201)the National Science Foundation of China(NSFC)Key Project(No.41130859)+1 种基金the NSFC(Nos.41506009,41521091)the NSFC Major Project(No.41490643)
文摘Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation(NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario(the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.
文摘The major emission sources of carbon dioxide, methane, nitrous oxide and CFCs in China have been identified, and the emission trends has been estimated. Besides fossil fuel combustion, human respiration and biomass burning are important sources. Some feasible abatement measures on energy conservation, afforestation and biomass recycling have been discussed.
基金supported by the National Natural Science Foundation of China (No. 71273277, 71722003, 71690244)the Philosophy and Social Sciences Major Research Project of the Ministry of Education (No. 11JZD048)the National Key R&D Program (2016YFC0208901)
文摘The studies and development of coal seam gas(CSG) have been conducted for more than 30 years in China, but few of China's CSG projects have achieved large-scale commercial success; faced with the boom of shale gas, some investors are beginning to lose patience and confidence in CSG. China currently faces the following question: Should the government continue to vigorously support the development of the CSG industry? To provide a reference for policy makers and investors, this paper calculates the EROI_(stnd)[a standardized energy return on investment(EROI) method], EROI_(ide)(the maximum theoretical EROI), EROI_(3,i)(EROI considering the energy investment in transport), and EROI_(3,1+e)(EROI with environmental inputs) of a single vertical CSG well in the Fanzhuang CSG project in the Qinshui Basin. The energy payback time(EPT) and the greenhouse gas(GHG) emissions of the CSG systems are also calculated. The results show that over a 15-year lifetime, EROI_(stnd), EROI_(ide), EROI_(3,1), and EROI_(3,1+e)are expected to deliver EROIs of approximately11:1, 20:1, 7:1, and 6:1, respectively. The EPT within different boundaries is no more than 2 years, and the life-cycle GHG emissions are approximately 18.8 million kg CO_2 equivalent. The relatively high EROI and short EPT indicate that the government should take more positive measures to promote the development of the CSG industry.
基金supported by the National Basic Research Program (No.2012CB955504and 2010CB955703)
文摘The global warming potential (GWP) and global temperature potential (GTP) are two common metrics to calculate the CO2 equivalent of greenhouse gases (GHGs). If the country's GHG emissions are calculated with GTP instead of GWP, the shares of the EU, USA, Japan, Canada and South Africa rise in the period 1990-2005, and those of Brazil, Australia, China, India, Mexico and Russia decrease. From 2015 to 2030, the projected shares of the EU, USA, Japan and China will increase, but those of Russia, Canada, Australia, India, Mexico and Brazil will decrease. The reduced shares of Brazil and Australia and increased share of the EU might be one of the important reasons that Brazil and Australia suggested to adopt GTP instead of GWP as early as possible, but the EU opposed it.
文摘Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworthy that cropping practices decided to increase or decrease grain yield, and reduce or promote greenhouse gas emissions. In this study, a meta-analysis was conducted to quantify the effects of rice basic seedlings (BS) on the global warming potential (GWP) of GHG emissions at the yield-scale in China. The results suggested that significant difference was observed in yield-scaled GWP of BS. The lowest yield-scaled GWP occurred at 80-100 BS (415.65 kg CO2 equiv/mg). The yield-scaled GHG emission from high to low was that of the hybrid rice varieties (1 028.86 kg CO2 equiv/mg), the conventional rice varieties (634.15 kg CO2 equiv/mg) and the super rice varieties (576.57 kg CO2 equiv/mg). Consequently, the model of conventional rice varieties and super rice varieties at 80-100 BS could be a scientifc method of matching inthe rice cropping system. A further assessment of rice density and variety impacts on GHG emissions at yield-scale was urgently needed to develop, so as to achieve win-win policies of rice production for higher yield with lower emissions.
文摘The persistent rise in concentrations of greenhouse gases (GHGs) in the earth’s atmosphere is responsible for global warming and climate change. Besides the known source of GHGs emissions like energy, industry, and agriculture, intrinsic emissions from natural inland water bodies like wetland, rivers, reservoirs, estuaries, etc. have also been identified as other hotspots of GHGs emission and gaining the attention of the scientific communities in recent times. Inland fisheries in India are threatened by climate changes such as a change in temperature, precipitation, droughts, storm, sea-level rise, saltwater intrusion, floods that affect mostly the production, productivity and ultimately affect the fishers’ livelihood. There are, however, different mitigation and adaptation strategies to cope with the effects of climate change. Carbon sequestration and other related management interventions are one of the options available minimizing GHGs emissions from inland open waters, particularly the wetlands and coastal mangroves which are well known worldwide for their significant role in the storage of carbon. Assessment of C efflux from exposed sediments in dry streams, reservoirs, lakes, rivers, and ponds into the atmosphere can be considered imperative for a better understanding of their role as a C-sink or as a C-source to the atmosphere.
基金financially supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA09A209)the National Basic Research Program of China (Grant No. 2009CB219507)
文摘Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method,the physical and mathematical models are developed to simulate the hydrate dissociation.The mathematical model can be used to analyze the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,the convection and conduction on the hydrate dissociation and gas and water production.The mechanism of gas production by the combination of warm water flooding and depressurization is revealed by the numerical simulation.The evolutions of such physical variables as pressure,temperature,saturations and gas and water rates are analyzed.Numerical results show that under certain conditions the combination method has the advantage of longer stable period of high gas rate than the single producing method.
基金Chinese Special Funds for Major State Basic Research Projects 973 (No. G1999022104).
文摘A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter. This is a combination of the surface and deep bed filtering processes. A set of facilities was established and a series of cold model tests were carried out. The dust removal efficiency and the pressure drop of the filter were measured and analyzed. The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency. Meanwhile, the granules moving downward cleans the cake on the screen surface, so that the system is operated at steady state.
基金the National Key Research and Development Program of China(2016YFA0602100 and 2018YFE0109600)Regional and Global Model Analysis(RGMA)component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy’s Office of Biological&Environmental Research(BER)via National Science Foundation(IA 1844590)National Center for Atmospheric Research,which is a major facility sponsored by the National Science Foundation under Cooperative Agreement(1852977)。
文摘Continuous emissions of anthropogenic greenhouse gases(GHGs)and aerosols in the last 160 years have resulted in an increasing trend of global mean surface temperatures(GMSTs).Due to interactions with natural variability,rates of the combined anthropogenically and naturally induced warming trends are characterized by significant slowdowns and speedups on decadal timescales.Here,by analyzing observed and model-simulated data,we investigate how the duration of these episodes will change with different strengths of GHG and aerosol forcing.We found that the duration of warming slowdowns can be more than 30 yr with a slower rate of anthropogenic emissions but would shorten to about 5 yr with a higher one.This duration reduction depends on both the magnitude of the climate response to anthropogenic forcing and the strength of the internal variability.Moreover,the warming slowdowns can still occur even towards the end of this century under high emissions scenarios but with significantly shortened duration.
基金supported by the National Natural Science Foundation of China(No.31170414)the 100 Talents Program of Chinese Academy of Science(No.2009)
文摘Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP.
文摘The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, which works in a semi-dry mode, the water is injected in the form of spray to maximum its contact surface with the gas. The criteria for the design of the water nozzles would be nigh water concentration but no liquid impinging on the solid wall and complete evaporation inside the tower. In order to optimize the atomizer design, the effects of the spray type (hollow or solid cone), their initial droplet she distribution and water flow rate on the performance of the acid gas absorption were investigated. The liquid behaviour was studied with a fluid dynamic simulation code, and the overall performance was checked experimentally. This paper presents the use of a commercial CFD code, FLUENT, and some modifications made during such investigation. The modification includes the viscosity of the flue gas defined as a function of the temperature, and the initial mass fraction of different droplet size group described with an exponential distribution formula of Rosin-Rammler. The investigation results (the optimal spray parameters) were used to guide the water nozzle design. The general performance of the flue gas clean-up system measured during the plant operation complied with the design criteria.
文摘In order to obtain the dynamic characteristics of a differential piston warm gas selfpressurization system for liquid attitude and divert propulsion system, a transient model is developed using the modular modeling method. The system includes the solid start cartridge,pressure-amplified tank with liquid monopropellant, liquid regulator, gas generator, and pipes.The one-dimensional finite-element state-variable model is applied to the pipes and the lumped parameter method is adopted for the other modules. The variations of the system operation parameters over time during the startup, steady-state, and pulsing operational processes are obtained from the transient model, and the characteristics of starting time changing with different system parameters are also analyzed. It is shown that the system startup process can be divided into three distinct processes. The starting time monotonically changes with variations of the liquid regulator parameters, first decreasing and then increasing with the mass change of the solid propellant charge of the start cartridge, initial gas cavity volume of the pressure amplified tank and initial gas cushion of the propellant tank. The starting time can be reduced to less than 1.0 s(0.68–0.75 s for the current system). For meeting the deviation requirements of ±10% of the steady-state propellant tank pressure, the positive deviation requirement is assured by the self-locking pressure and the negative deviation can be assured within an allowable maximum propellant tank volume flowrate(1.6 times the design value for the proposed system) for downstream thrusters for a designed system. The results from the simulation are useful as a guide for further system design and testing.