The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the o...The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.展开更多
Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfe...Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfer efficiency. In previous studies, copper oxide layer improves the wettability. In this study, we focus on a copper oxide layer produced under warm conditions (from 200 to 300 ℃), which are suitable oxidation conditions for improving wettability. Experimental results showed that the surface of the specimens was covered by the oxidation layer and took on a black color. Furthermore, the wettability was improved by the warm copper oxide layer. While, the surface roughness was approximately constant to each warm oxidized specimen. Whereat, the warm oxide layer was observed by SEM (sanning electron microscope). The results from SEM observations showed that the warm copper oxide layer consisted of stacks and combinations of nanoscopic warm oxidation particles. Thus, the warm oxidation layer has nanoscopic surface asperities. It is seemed that these nanoscopic asperities improved the wettability.展开更多
Observational data obtained during the TOGA-COARE IOP in the "warm pool" area of the West-ern Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixedlayer. The...Observational data obtained during the TOGA-COARE IOP in the "warm pool" area of the West-ern Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixedlayer. The influence of westerly burst and rainfall on SST, salinity. and mixed layer depth are discussed.There are two pairs of counteracting processes in the "warm pool" mixed layer: (1) The increase of mixedlayer depth caused by local westerly bursts and the decrease of mixed layer depth caused by larger scaleeasterly relaxation;(2) the vertical mixing by local wind and the strong stratification due to rainfall in themixed layer. Some possible mechanisms through the interactions between the intraseasonal time scale varia-tions of the oceanic mixed layer and atmospheric low frequency oscillations are revealed.展开更多
This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mel...This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mellor-Yamada turbulence closure scheme.The upper ocean thermal structures through Princeton ocean model are examined by experiments in the cases of idealized forcing and real observational situation.The results suggest that Stokes drift can generally enhance turbulence kinetic energy and deepen MLD either in summer or in winter.This effect will improve the simulation results in summer,but it will lead to much deeper MLD in winter compared to observational data.It is found that MLD can be correctly simulated by combining Stokes drift and the thermal effects of the cool skin layer and diurnal warm layer on the upper mixing layer.In the case of high shortwave radiation and weak wind speed,which usually occurs in summer,the heat absorbed from sun is blocked in the warm layer and prevented from being transferred downwards.As a result,the thermal effects in summer nearly has no influence on dynamic effect of Stokes drift that leads to deepening MLD.However,when the stratification is weak in winter,the thermal effects will counteract the dynamic effect of Stokes drift through enhancing the strength of stratification and suppress mixing impact.Therefore,the dynamic and thermal effects should be considered simultaneously in order to correctly simulate upper ocean thermal structures in both summer and winter.展开更多
Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafr...Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.展开更多
A significant strong, warm “Blob”(a large circular water body with a positive ocean temperature anomaly) appeared in the Northeast Pacific (NEP) in the boreal winter of 2013 2014, which induced many extreme climate ...A significant strong, warm “Blob”(a large circular water body with a positive ocean temperature anomaly) appeared in the Northeast Pacific (NEP) in the boreal winter of 2013 2014, which induced many extreme climate events in the US and Canada. In this study, analyses of the temperature and salinity anomaly variations from the Array for Real-time Geostrophic Oceanography (Argo) data provided insights into the formation of the warm “Blob” over the NEP. The early negative salinity anomaly dominantly contributed to the shallower mixed layer depth (MLD) in the NEP during the period of 2012 2013. Then, the shallower mixed layer trapped more heat in the upper water column and resulted in a warmer sea surface temperature (SST), which enhanced the warm “Blob”. The salinity variability contributed to approximately 60% of the shallowing MLD related to the warm “Blob”. The salinity anomaly in the warm “Blob” region resulted from a combination of both local and nonlocal effects. The freshened water at the surface played a local role in the MLD anomaly. Interestingly, the MLD anomaly was more dependent on the local subsurface salinity anomaly in the 100-150 m depth range in the NEP. The salinity anomaly in the 50-100 m depth range may be linked to the anomaly in the 100-150 m depth range by vertical advection or mixing. The salinity anomaly in the 100-150 m depth range resulted from the eastward transportation of a subducted water mass that was freshened west of the dateline, which played a nonlocal role. The results suggest that the early salinity anomaly in the NEP related to the warm “Blob” may be a precursor signal of interannual and interdecadal variabilities.展开更多
The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction ...The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F^rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.展开更多
Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salini...Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind, precipitation, net heat fluxes and current velocity data. A△T=-0.4℃ is more suitable than other temperature criterion for determining the mixed layer (ML) and barrier layer (BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer (DL). The BL thickness (BLT) is the thickest, while the ML thickness (MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness (DLT) and BLT. They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15℃, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41-0.45. Zonal currents, i.e., the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher (lower) winds cause both the MLT and BLT to thicken (thin), a stronger (weaker) NECC induces MLT, BLT, and DLT to thin (thicken), and a stronger (weaker) SEC causes both the MLT and BLT to thicken (thin) and the DLT to thin (thicken). An increase (decrease) in the net heat fluxes causes the MLT and BLT to thicken (thin) but the DLT to thin (thicken), while a stronger (weaker) precipitation favors thinner (thicker) MLT but thicker (thinner) BLT and DLT. In addition, a stronger (weaker) NECC and SEC cause the temperature of the three layers to decrease (increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell (STC).展开更多
基于天气研究和预报模式(WRF)中尺度数值模式,比较分析四种边界层参数化方案(YSU、MYJ、MYNN、 ACM2)对华南暖区强对流过程模拟的影响。结果表明:(1)四个方案均模拟出广东区域午后有强对流天气发展,但模拟的平均降水量比实况偏小,最大...基于天气研究和预报模式(WRF)中尺度数值模式,比较分析四种边界层参数化方案(YSU、MYJ、MYNN、 ACM2)对华南暖区强对流过程模拟的影响。结果表明:(1)四个方案均模拟出广东区域午后有强对流天气发展,但模拟的平均降水量比实况偏小,最大降水强度出现时间滞后1~2 h。(2)四个方案模拟的气温垂直分布与实况非常接近,模拟的850 h Pa以下的低层湿度整体偏大,而模拟的800~950 h Pa风速整体偏小。(3)相比之下,YSU非局地闭合方案模拟的对流回波形态整体与实况最接近,MYJ方案对低层区域800~950 h Pa的风速模拟效果更好,且模拟的较强降水出现时段更接近实况。(4)MYJ和MYNN虽同为局地闭合方案,但模拟结果有较大差异,MYNN方案模拟的低层风速、地面感热通量和潜热通量要明显小于MYJ方案,而YSU和ACM2方案模拟结果差异相对较小。展开更多
基金supported by the National Basic Research Program of China (Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41476002, 41490643, 41176006 and 41221063)the Fundamental Research Funds for the Central Universities (Grant No. 201503029)
文摘The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.
文摘Recently, high heat density has become a problem in electronic devices. Therefore, high heat-transfer efficiency is required in copper heat exchangers. Improvement ofwettability is reported to improve the heat-transfer efficiency. In previous studies, copper oxide layer improves the wettability. In this study, we focus on a copper oxide layer produced under warm conditions (from 200 to 300 ℃), which are suitable oxidation conditions for improving wettability. Experimental results showed that the surface of the specimens was covered by the oxidation layer and took on a black color. Furthermore, the wettability was improved by the warm copper oxide layer. While, the surface roughness was approximately constant to each warm oxidized specimen. Whereat, the warm oxide layer was observed by SEM (sanning electron microscope). The results from SEM observations showed that the warm copper oxide layer consisted of stacks and combinations of nanoscopic warm oxidation particles. Thus, the warm oxidation layer has nanoscopic surface asperities. It is seemed that these nanoscopic asperities improved the wettability.
基金Supported by National Natural Science Foundation of China (49276250) and LASG of Beijing.
文摘Observational data obtained during the TOGA-COARE IOP in the "warm pool" area of the West-ern Tropical Pacific were used to analyze some characteristics of the intraseasonal variations in the mixedlayer. The influence of westerly burst and rainfall on SST, salinity. and mixed layer depth are discussed.There are two pairs of counteracting processes in the "warm pool" mixed layer: (1) The increase of mixedlayer depth caused by local westerly bursts and the decrease of mixed layer depth caused by larger scaleeasterly relaxation;(2) the vertical mixing by local wind and the strong stratification due to rainfall in themixed layer. Some possible mechanisms through the interactions between the intraseasonal time scale varia-tions of the oceanic mixed layer and atmospheric low frequency oscillations are revealed.
基金The National Natural Science Foundation of China under contract Nos 41876010 and 41276015the Public Science and Technology Research Funds Projects of Ocean under contrct No.201505007+1 种基金the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government under contract No.U1406402the National Natural Science Foundation of China under contract No.41806028。
文摘This study explores the influence of Stokes drift and the thermal effects on the upper ocean bias which occurs in the summer with overestimated sea surface temperature(SST)and shallower mixed layer depth(MLD)using Mellor-Yamada turbulence closure scheme.The upper ocean thermal structures through Princeton ocean model are examined by experiments in the cases of idealized forcing and real observational situation.The results suggest that Stokes drift can generally enhance turbulence kinetic energy and deepen MLD either in summer or in winter.This effect will improve the simulation results in summer,but it will lead to much deeper MLD in winter compared to observational data.It is found that MLD can be correctly simulated by combining Stokes drift and the thermal effects of the cool skin layer and diurnal warm layer on the upper mixing layer.In the case of high shortwave radiation and weak wind speed,which usually occurs in summer,the heat absorbed from sun is blocked in the warm layer and prevented from being transferred downwards.As a result,the thermal effects in summer nearly has no influence on dynamic effect of Stokes drift that leads to deepening MLD.However,when the stratification is weak in winter,the thermal effects will counteract the dynamic effect of Stokes drift through enhancing the strength of stratification and suppress mixing impact.Therefore,the dynamic and thermal effects should be considered simultaneously in order to correctly simulate upper ocean thermal structures in both summer and winter.
文摘Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.
基金The National Key Research and Development Program for Developing Basic Sciences under contract Nos 2016YFC1401601 and 2016YFC1401401the National Natural Science Foundation of China under contract Nos 41376026,41690122,41690120 and 41475101+2 种基金the NSFC–Shandong Joint Fund for Marine Science Research Centers under contract No.U1406401the NSFC Innovative Group Grant under contract No.41421005the Taishan Scholarship
文摘A significant strong, warm “Blob”(a large circular water body with a positive ocean temperature anomaly) appeared in the Northeast Pacific (NEP) in the boreal winter of 2013 2014, which induced many extreme climate events in the US and Canada. In this study, analyses of the temperature and salinity anomaly variations from the Array for Real-time Geostrophic Oceanography (Argo) data provided insights into the formation of the warm “Blob” over the NEP. The early negative salinity anomaly dominantly contributed to the shallower mixed layer depth (MLD) in the NEP during the period of 2012 2013. Then, the shallower mixed layer trapped more heat in the upper water column and resulted in a warmer sea surface temperature (SST), which enhanced the warm “Blob”. The salinity variability contributed to approximately 60% of the shallowing MLD related to the warm “Blob”. The salinity anomaly in the warm “Blob” region resulted from a combination of both local and nonlocal effects. The freshened water at the surface played a local role in the MLD anomaly. Interestingly, the MLD anomaly was more dependent on the local subsurface salinity anomaly in the 100-150 m depth range in the NEP. The salinity anomaly in the 50-100 m depth range may be linked to the anomaly in the 100-150 m depth range by vertical advection or mixing. The salinity anomaly in the 100-150 m depth range resulted from the eastward transportation of a subducted water mass that was freshened west of the dateline, which played a nonlocal role. The results suggest that the early salinity anomaly in the NEP related to the warm “Blob” may be a precursor signal of interannual and interdecadal variabilities.
基金supported by the Chinese National Key Basic Research Program(2010CB950301)National Natural Science Foundation of China(NSFC)(Grant No.41276200)+3 种基金the Special Program for China Meteorology Trade(Grant No.GYHY201306020)the Scientific Research Foundation for the Introduction of Talent of Nanjing University of Information Science and Technology(S8112066001)General University Science Research Project of Jiangsu Province(13KJB170019)funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F^rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB417402the CAS Strategy Pioneering Program under contract No.XDA10020104+1 种基金the Global Change and Air–Sea Interaction under contract No.GASI-03-01-01-02the National Natural Science Foundation of China under contract No.41406012
文摘Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind, precipitation, net heat fluxes and current velocity data. A△T=-0.4℃ is more suitable than other temperature criterion for determining the mixed layer (ML) and barrier layer (BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer (DL). The BL thickness (BLT) is the thickest, while the ML thickness (MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness (DLT) and BLT. They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15℃, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41-0.45. Zonal currents, i.e., the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher (lower) winds cause both the MLT and BLT to thicken (thin), a stronger (weaker) NECC induces MLT, BLT, and DLT to thin (thicken), and a stronger (weaker) SEC causes both the MLT and BLT to thicken (thin) and the DLT to thin (thicken). An increase (decrease) in the net heat fluxes causes the MLT and BLT to thicken (thin) but the DLT to thin (thicken), while a stronger (weaker) precipitation favors thinner (thicker) MLT but thicker (thinner) BLT and DLT. In addition, a stronger (weaker) NECC and SEC cause the temperature of the three layers to decrease (increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell (STC).
文摘基于天气研究和预报模式(WRF)中尺度数值模式,比较分析四种边界层参数化方案(YSU、MYJ、MYNN、 ACM2)对华南暖区强对流过程模拟的影响。结果表明:(1)四个方案均模拟出广东区域午后有强对流天气发展,但模拟的平均降水量比实况偏小,最大降水强度出现时间滞后1~2 h。(2)四个方案模拟的气温垂直分布与实况非常接近,模拟的850 h Pa以下的低层湿度整体偏大,而模拟的800~950 h Pa风速整体偏小。(3)相比之下,YSU非局地闭合方案模拟的对流回波形态整体与实况最接近,MYJ方案对低层区域800~950 h Pa的风速模拟效果更好,且模拟的较强降水出现时段更接近实况。(4)MYJ和MYNN虽同为局地闭合方案,但模拟结果有较大差异,MYNN方案模拟的低层风速、地面感热通量和潜热通量要明显小于MYJ方案,而YSU和ACM2方案模拟结果差异相对较小。