Wind is a great source of renewable energy in western Alaska.Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season,when the energy demand is the highest.Foundation engineerin...Wind is a great source of renewable energy in western Alaska.Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season,when the energy demand is the highest.Foundation engineering in warm permafrost has always been a challenge in wind energy development.Degrading warm permafrost poses engineering issues to design,construction,and operation of wind turbines.This paper describes the foundation design of a wind turbine built in western Alaska.It presents a system for response monitoring and load assessment,and data collected from September 2013 to March 2014.The dynamic properties are assessed based on the monitoring data,and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed.These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.展开更多
The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected fr...The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)- COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0 degrees, 156 degreesE during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to 1 degreesC. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 in to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one, There are also differences in the currents structure. The different variations of thermal and currents structure in the mixing layers accounted for the different variation of the heat balance during the two events, especially the advection and residue terms. The seasonal variation of SST in this area is also investigated simply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.展开更多
Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the r...Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.展开更多
Observational analyses show that the equatorial trough in the western North Pacific (WNP) is a well-known origin for tropical cyclones (TC) which have tended to weaken in intensity and decrease in number during the la...Observational analyses show that the equatorial trough in the western North Pacific (WNP) is a well-known origin for tropical cyclones (TC) which have tended to weaken in intensity and decrease in number during the last several decades under global warming. A scientific problem then arises as to why higher sea surface temperatures (SSTs), one of the necessary conditions for typhoon genesis, can cause a weakened equatorial trough and a decreased TC number. In this paper, the WNP is taken as an example to illustrate a possible mechanism for the above-mentioned seemingly counterintuitive phenomena and explain the causality between the unusually heterogeneous pattern of SSTs in a warming environment and TC number in the WNP. This mechanism is based substantially on the second law of thermodynamics.展开更多
A series of numerical experiments are carried out to study the tropical upper ocean response to combined momentum and buoyancy forcing, with emphasis on the three-dimensional thermohaline structure in the western Paci...A series of numerical experiments are carried out to study the tropical upper ocean response to combined momentum and buoyancy forcing, with emphasis on the three-dimensional thermohaline structure in the western Pacific warm pool. In response to climatological winds, heat fluxes and freshwater input, the model is able to simulate the salient dynamic and hydrographic features of the tropical Pacific Ocean and their seasonal variability. In response to idealized episodic westerly wind bursts and rainfall, the simulated upper ocean conditions compare favorably with available observations, thus enabling us to identify important physical processes involved. Local forcing, vertical mixing and meridional advection dominate the salt and heat budgets in the warm pool on short time scales, but it is necessary to include the saline water coming from the east with the South Equatorial Current to close the salt budget on seasonal and longer time scales. Strong westerly wind bursts generate a swift eastward equatorial jet and a pair of meridional circulation cells with convergence at the equator. This results in an equatorward advection of relatively fresh water from the north and a depression of the thermocline at the equator. Heavy rainfall reduces the surface mixed layer depth by creating a shallow halocline, thus trapping the momentum and heat inputs near the surface. The remote influences of the episodic momentum and buoyancy fluxes are very different. Westerly wind bursts can generate large downstream disturbances in both dynamic and thermal fields through the propagation of equatorial waves, while the effect of rainfall is mostly confined to the forcing area.展开更多
Due to orographic blockage, a weak wind wake occurs in summer off northeast Vietnam in the South China Sea. Under the wind wake, warm water is observed from both high-resolution satellite data and hydrographic observa...Due to orographic blockage, a weak wind wake occurs in summer off northeast Vietnam in the South China Sea. Under the wind wake, warm water is observed from both high-resolution satellite data and hydrographic observations. The wake of warm water forms in June, continues to mature in July and August, starts to decay in September, and disappears in October. The warm water wake also shows robust diurnal variation – it intensifies during the day and weakens in the night. Warm water wakes can be generated through wind-induced mixing and thermal(latent heat flux) processes. In this paper, a mixed layer model is used to evaluate the relative importance of the two processes on seasonal and diurnal timescales, respectively. The results demonstrate that thermal processes make a greater contribution to the wake than wind-induced mixing processes on a seasonal timescale, while the warm water wake is dominated by wind-induced mixing processes on a diurnal timescale.展开更多
Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence o...Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence of high wind processes on the circulation and water exchange between the Bohai and Yellow Seas(BYS)in winter.The results show that the vertical structure of the Yellow Sea Warm Current(YSWC)is relatively uniform under condition of high winds,showing obvious barotropic features.However,this flow is not a stable mean flow,showing strong paroxysmal and reciprocating characteristics.A comparison of the changes in sea level suggests that the intensity of the northwards upwind flow is consistent with the abnormal fluctuations in the sea level.It indicates that the upwind flow is closely related to the water exchange between the BYS.The impact of high wind processes on the water exchange between the BYS is enormous.It can make the flux through the Bohai Strait,as well as that through the mouth of each constituent bay(i.e.,Liaodong Bay,Bohai Bay,and Laizhou Bay)far greater than usual,resulting in a significant increase in the water exchange rate.The exchange capacity,which is about 8%of the total volume of the Bohai Sea,can be completed in a few days.Therefore,the water exchange of the Bohai Sea may be completed by only a few occasional high wind processes in winter.展开更多
Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacif...Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacific SST to the anomalous wind field during 1992/1993 EI Nino has been analyzed. The results show that the eastward transport of warm water of the tropical western Pacific due to the westerly wind burst leads not only to a drop of sea level but also to a raise of thermocline in the tropical western Pacific. Consequently the heat content in upper layer water decreases especially in the thermocline. Contrary to this, the positive anomalies Of heat content and thermocline depth appear in the tropical eastern Pacific. The positive anomalies in the eastern Pacific lag the negative ones in the western Pacific by two months; The anomalous eastward shift of warm pei (28℃isotherm) is a direct response of ocean current to westerly wind anomalies in low-level atmosphere; quantitative calculations show that the thermal advection caused by anomalous ocean current is the main force of anomalous eastward displacement of the warm pool (28℃isotherm) and the one of main causes for anomalous warming of the tropical eastern Pacific.展开更多
Radiation and advection frost are common in Jordan as well as other neighboring countries as they face several frost waves each year during the late months of winter. Recently, many frost episodes hit the valley and d...Radiation and advection frost are common in Jordan as well as other neighboring countries as they face several frost waves each year during the late months of winter. Recently, many frost episodes hit the valley and damaged the crops that were compensated by millions of dollars by the Jordanian Government. This manuscript addresses and characterizes frost, and assesses the role of global warming in impacting frost in terms of its frequency, severity, and total number of frost days per year. A comprehensive statistical approach was used. The paper indicates that frost waves will continue to hit in the near future regardless of the fact that Earth is moving towards warmer conditions. Agricultural and financial authorities should be urged to minimize frost damage by considering installing wind fans in Jordan valley as an active method in addition to implementing good farm practices (as a passive methods where deemed necessary).展开更多
基金the support from the Western Project Program of the Chinese Academy of Sciences (KZCX2-XB3-19)the State Key Development Program of Basic Research of China (973 Plan, 2012CB026101)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 41121061)the National Sci-Tech Support Plan (2014BAG05B05)
文摘Wind is a great source of renewable energy in western Alaska.Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season,when the energy demand is the highest.Foundation engineering in warm permafrost has always been a challenge in wind energy development.Degrading warm permafrost poses engineering issues to design,construction,and operation of wind turbines.This paper describes the foundation design of a wind turbine built in western Alaska.It presents a system for response monitoring and load assessment,and data collected from September 2013 to March 2014.The dynamic properties are assessed based on the monitoring data,and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed.These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.
基金This work was co-supported by the National Key Project (Grant No, 96-908-02-03), the NationalNatural Science Foundation of Chi
文摘The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)- COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0 degrees, 156 degreesE during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to 1 degreesC. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 in to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one, There are also differences in the currents structure. The different variations of thermal and currents structure in the mixing layers accounted for the different variation of the heat balance during the two events, especially the advection and residue terms. The seasonal variation of SST in this area is also investigated simply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.
基金supported by the National Natural Science Foundation of China(41425019,41661144016,91537214)the Public Science and Technology Research Funds Projects of the Ocean(201505013)
文摘Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.
文摘Observational analyses show that the equatorial trough in the western North Pacific (WNP) is a well-known origin for tropical cyclones (TC) which have tended to weaken in intensity and decrease in number during the last several decades under global warming. A scientific problem then arises as to why higher sea surface temperatures (SSTs), one of the necessary conditions for typhoon genesis, can cause a weakened equatorial trough and a decreased TC number. In this paper, the WNP is taken as an example to illustrate a possible mechanism for the above-mentioned seemingly counterintuitive phenomena and explain the causality between the unusually heterogeneous pattern of SSTs in a warming environment and TC number in the WNP. This mechanism is based substantially on the second law of thermodynamics.
文摘A series of numerical experiments are carried out to study the tropical upper ocean response to combined momentum and buoyancy forcing, with emphasis on the three-dimensional thermohaline structure in the western Pacific warm pool. In response to climatological winds, heat fluxes and freshwater input, the model is able to simulate the salient dynamic and hydrographic features of the tropical Pacific Ocean and their seasonal variability. In response to idealized episodic westerly wind bursts and rainfall, the simulated upper ocean conditions compare favorably with available observations, thus enabling us to identify important physical processes involved. Local forcing, vertical mixing and meridional advection dominate the salt and heat budgets in the warm pool on short time scales, but it is necessary to include the saline water coming from the east with the South Equatorial Current to close the salt budget on seasonal and longer time scales. Strong westerly wind bursts generate a swift eastward equatorial jet and a pair of meridional circulation cells with convergence at the equator. This results in an equatorward advection of relatively fresh water from the north and a depression of the thermocline at the equator. Heavy rainfall reduces the surface mixed layer depth by creating a shallow halocline, thus trapping the momentum and heat inputs near the surface. The remote influences of the episodic momentum and buoyancy fluxes are very different. Westerly wind bursts can generate large downstream disturbances in both dynamic and thermal fields through the propagation of equatorial waves, while the effect of rainfall is mostly confined to the forcing area.
基金The National Science Fund of China for Distinguished Young Scholars(NSFDYS)under contract No.41125019the National Basic Research Program of China under contract Nos 2012CB955601 and 2013CB430301the Basic Research Program of Second Institute of Oceanography,State Oceanic Administration of China under contract No.JT1301
文摘Due to orographic blockage, a weak wind wake occurs in summer off northeast Vietnam in the South China Sea. Under the wind wake, warm water is observed from both high-resolution satellite data and hydrographic observations. The wake of warm water forms in June, continues to mature in July and August, starts to decay in September, and disappears in October. The warm water wake also shows robust diurnal variation – it intensifies during the day and weakens in the night. Warm water wakes can be generated through wind-induced mixing and thermal(latent heat flux) processes. In this paper, a mixed layer model is used to evaluate the relative importance of the two processes on seasonal and diurnal timescales, respectively. The results demonstrate that thermal processes make a greater contribution to the wake than wind-induced mixing processes on a seasonal timescale, while the warm water wake is dominated by wind-induced mixing processes on a diurnal timescale.
基金Supported by the National Natural Science Foundation of China(Nos.41506034,41676004,41376001,41430963)the Basic Scientific Fund for National Public Research Institutes of China(No.GY0213G02)+1 种基金the National Program on Global Change and Air-Sea Interaction(No.GASIGEOGE-03)the National Key Research and Development Program(No.2016YFA0600900)
文摘Based on the data from a special project titled China's Offshore Marine Integrated Investigation and Evaluation as well as Regional Ocean Modeling Systems(ROMS)diagnostic numerical model,we studied the influence of high wind processes on the circulation and water exchange between the Bohai and Yellow Seas(BYS)in winter.The results show that the vertical structure of the Yellow Sea Warm Current(YSWC)is relatively uniform under condition of high winds,showing obvious barotropic features.However,this flow is not a stable mean flow,showing strong paroxysmal and reciprocating characteristics.A comparison of the changes in sea level suggests that the intensity of the northwards upwind flow is consistent with the abnormal fluctuations in the sea level.It indicates that the upwind flow is closely related to the water exchange between the BYS.The impact of high wind processes on the water exchange between the BYS is enormous.It can make the flux through the Bohai Strait,as well as that through the mouth of each constituent bay(i.e.,Liaodong Bay,Bohai Bay,and Laizhou Bay)far greater than usual,resulting in a significant increase in the water exchange rate.The exchange capacity,which is about 8%of the total volume of the Bohai Sea,can be completed in a few days.Therefore,the water exchange of the Bohai Sea may be completed by only a few occasional high wind processes in winter.
文摘Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacific SST to the anomalous wind field during 1992/1993 EI Nino has been analyzed. The results show that the eastward transport of warm water of the tropical western Pacific due to the westerly wind burst leads not only to a drop of sea level but also to a raise of thermocline in the tropical western Pacific. Consequently the heat content in upper layer water decreases especially in the thermocline. Contrary to this, the positive anomalies Of heat content and thermocline depth appear in the tropical eastern Pacific. The positive anomalies in the eastern Pacific lag the negative ones in the western Pacific by two months; The anomalous eastward shift of warm pei (28℃isotherm) is a direct response of ocean current to westerly wind anomalies in low-level atmosphere; quantitative calculations show that the thermal advection caused by anomalous ocean current is the main force of anomalous eastward displacement of the warm pool (28℃isotherm) and the one of main causes for anomalous warming of the tropical eastern Pacific.
文摘Radiation and advection frost are common in Jordan as well as other neighboring countries as they face several frost waves each year during the late months of winter. Recently, many frost episodes hit the valley and damaged the crops that were compensated by millions of dollars by the Jordanian Government. This manuscript addresses and characterizes frost, and assesses the role of global warming in impacting frost in terms of its frequency, severity, and total number of frost days per year. A comprehensive statistical approach was used. The paper indicates that frost waves will continue to hit in the near future regardless of the fact that Earth is moving towards warmer conditions. Agricultural and financial authorities should be urged to minimize frost damage by considering installing wind fans in Jordan valley as an active method in addition to implementing good farm practices (as a passive methods where deemed necessary).