Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug de...Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.展开更多
Drug discovery leading to robust and viable lead candidates’ remains a challenging scientific task, which is the transition from a screening hit to a drug candidate, requires expertise and experience. Natural product...Drug discovery leading to robust and viable lead candidates’ remains a challenging scientific task, which is the transition from a screening hit to a drug candidate, requires expertise and experience. Natural products and their derivatives have been recognized for many years as a source of therapeutic agents and of structural diversity. However, in addition to their chemical structure diversity and their biodiversity, the development of new technologies has revolutionized the screening of natural products in discovering new drugs. Applying these technologies compensates for the inherent limitations of natural products and offers a unique opportunity to re-establish natural products as a major source for drug discovery. The present article attempts to describe the utilization of compounds derived from natural resources as drug candidates, with a focus on the success of these resources in the process of finding and discovering new and effective drug compounds, an approach commonly referred to as “natural product drug discovery”.展开更多
Natural active molecules are key sources of modern innovative drugs. Particularly, a great amount of natural active molecules have been reported to possess promising therapeutic effects on inflammatory diseases, inclu...Natural active molecules are key sources of modern innovative drugs. Particularly, a great amount of natural active molecules have been reported to possess promising therapeutic effects on inflammatory diseases, including asthma, rheumatoid arthritis, hepatitis, enteritis, metabolic disorders and neurodegenerative diseases. However, these natural active molecules with various molecular structures usually exert anti-inflammatory effects through diversiform pharmacological mechanisms, which is necessary to be summarized systematically. In this review, we introduced the current major anti-inflammatory natural active molecules based on their chemical structures, and discussed their pharmacological mechanisms including anti-inflammatory molecular signaling pathways and potential target proteins, which providing a referential significance on the development of novel anti-inflammatory drugs, and also revealing new therapeutic strategies for inflammatory diseases.展开更多
A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and ...A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Trans...展开更多
Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clini...Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clinical studies.Only a few of the available natural products are used to treat cancer since most of them have very high complexity and low bioavailability.Therefore,the process of anticancer drug discovery requires a straightforward and effective method to assess anticancer activity using in vitro assays.This review summarizes various cell-based assays and techniques used to measure cell viability,migration,and apoptosis,focusing in particular on the principles,mechanisms,advantages,and disadvantages of each assay to provide a preliminary platform for cancer drug discovery.展开更多
A potential strategy for drug lead identification and in-active natural products re-discovery is elaborated.Starting from fifteen structurally diverse natural products,a focused library featured by Michael acceptors i...A potential strategy for drug lead identification and in-active natural products re-discovery is elaborated.Starting from fifteen structurally diverse natural products,a focused library featured by Michael acceptors is constructed with IBX mediated oxidation.Biological assay on five tumor cell lines indicates that four Michael acceptors,8a,11a,12a,14a,are with improved cytotoxicity(3-10 folds more potent than the parent compounds),which merit further investigations.Further thiol-sensitive assay of the active hit 8a revealed that it was an irreversible Michael acceptor.The results suggest that the strategy is not only effective and relatively high discovery rate(28%),but also resource saving.展开更多
Drug-induced liver injury encompasses a spectrum of diseases ranging from mild biochemical abnormalities to acute liver failure; example of this scenery is hepatotoxicity caused by the first-line antituberculous drugs...Drug-induced liver injury encompasses a spectrum of diseases ranging from mild biochemical abnormalities to acute liver failure; example of this scenery is hepatotoxicity caused by the first-line antituberculous drugs isoniazid, rifampin and pyrazinamide, which are basic for treatment of drug-sensible and drug-resistant tuberculosis. In the search for pharmacological alternatives to prevent liver damage, antitubercular drugs have been the subject of numerous studies and published reviews, a great majority of them carried out by Asian countries. At the same time, hepatoprotectors from plant source are now emerging as a possible alternative to counteract the toxic effects of these therapeutic agents. The present review aims to highlight the most recent studies on the subject, based information published in scientific databases such as Scopus and Pub Med.展开更多
The 4 th Euro-Mediterranean Conference of Natural Products and Drug Discovery: Back to Mother Nature (Bio Nat-IV) was recently (from March 3 rd through 7 th, 2015) convened in Cairo and Sharm El-Sheikh along the Red S...The 4 th Euro-Mediterranean Conference of Natural Products and Drug Discovery: Back to Mother Nature (Bio Nat-IV) was recently (from March 3 rd through 7 th, 2015) convened in Cairo and Sharm El-Sheikh along the Red Sea coast of Egypt. Overall, the meeting provided a platform for scientists from different nations to discuss emerging ideas that focused on cell signaling in cancer;the pathogenesis of autoimmune diseases;the identification and use of natural products as well as novel drug delivery approaches for the treatment of cancer,arthritis, diabetes, tuberculosis, fungal infection, etc.;and untapped or unconventional sources for natural products. This fourth in a row conference tried to bridge the gap not only between basic research and clinical applications, but also between developed nations and developing countries. With the continuing success of these past meetings, the fifth EuroMediterranean Conference of Natural Products and Drug Discovery(BioNat-V) is slated to be in February 2017.展开更多
The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The highe...The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The higher plant-derived sesquiterpene,quinoline alkaloids,and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed.Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed.The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P.falciparum.To identify these novel scaffolds,we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data.Natural products were assigned to different structural classes using NPClassifier.To identify the most promising chemical scaffolds,we then correlated natural compound class with bioactivity and other data,namely(i)potency,(ii)resistance index,(iii)selectivity index and(iv)physicochemical properties.We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data.From this analysis we identified the top-ranked natural product pathway as the alkaloids.The top three ranked super classes identified were(i)pseudoalkaloids,(ii)naphthalenes and(iii)tyrosine alkaloids and the top five ranked classes(i)quassinoids(of super class triterpenoids),(ii)steroidal alkaloids(of super class pseudoalkaloids)(iii)cycloeudesmane sesquiterpenoids(of super class triterpenoids)(iv)isoquinoline alkaloids(of super class tyrosine alkaloids)and(v)naphthoquinones(of super class naphthalenes).Launched chemical space of these identified classes of compounds was,by and large,distinct from that of‘legacy’antimalarial drugs.Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs.These molecules have the potential to be developed into new antimalarial drugs.展开更多
For the past 2 years,the coronavirus responsible for the COVID-19 infection has become a world pandemic,ruining the lives and economies of several nations in the world.This has scaled up research on the virus and the ...For the past 2 years,the coronavirus responsible for the COVID-19 infection has become a world pandemic,ruining the lives and economies of several nations in the world.This has scaled up research on the virus and the resulting infection with the goal of developing new vaccines and therapies.Natural products are known to be a rich source of lead compounds for drug discovery,including against infectious diseases caused by microbes(viruses,bacteria and fungi).In this review article,we conducted a literature survey aimed at identifying natural products with inhibitory concentrations against the coronaviruses or their target proteins,which lie below 10μM.This led to the identification of 42 compounds belonging to the alkaloid,flavonoid,terpenoid,phenolic,xanthone and saponin classes.The cut off concentration of 10μM was to limit the study to the most potent chemical entities,which could be developed into therapies against the viral infection to make a contribution towards limiting the spread of the disease.展开更多
Hepatocellular carcinoma(HCC)remains a prevalent and challenging malignancy globally,characterized by its numerous causal factors and generally unfavorable prognosis.In the relentless pursuit of effective treatment mo...Hepatocellular carcinoma(HCC)remains a prevalent and challenging malignancy globally,characterized by its numerous causal factors and generally unfavorable prognosis.In the relentless pursuit of effective treatment modalities,natural products have emerged as a promising and relatively non-toxic alternative,garnering significant interest.The integration of natural products with contemporary medical research has yielded encouraging therapeutic outcomes in the management of HCC.This review offers a comprehensive overview of the causal factors underlying HCC,and the diverse treatment options available,and highlights the advancements made by natural products in anti-HCC research.Particularly,we provide an outline of the various types of natural products,their corresponding nomenclature,target molecules,and mechanisms of action that exhibit anti-HCC activities.Natural products are anticipated to play a pivotal role in future comprehensive treatment plans for liver cancer,potentially offering patients improved survival rates and an enhanced quality of life.展开更多
Over-expression of glutathione S-transferase(GST)can promote Cisplatin resistance in hepatocellular carcinoma(HCC)treatment.Hence,inhibiting GST is an attractive strategy to improve Cisplatin sensitivity in HCC therap...Over-expression of glutathione S-transferase(GST)can promote Cisplatin resistance in hepatocellular carcinoma(HCC)treatment.Hence,inhibiting GST is an attractive strategy to improve Cisplatin sensitivity in HCC therapy.Although several synthesized GST inhibitors have been developed,the side effects and narrow spectrum for anticancer seriously limit their clinical application.Considering the abundance of natural compounds with anticancer activity,this study developed a rapid fluorescence technique to screen“green”natural GST inhibitors with high specificity.The fluorescence assay demonstrated that schisanlactone B(hereafter abbreviated as C1)isolated from Xue tong significantly down-regulated GST levels in Cisplatin-resistant HCC cells in vitro and in vivo.Importantly,C1 can selectively kill HCC cells from normal liver cells,effectively improving the therapeutic effect of Cisplatin on HCC mice by downregulating GST expression.Considering the high GST levels in HCC patients,this compound demonstrated the high potential for sensitizing HCC therapy in clinical practice by down-regulating GST levels.展开更多
There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Researc...There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Research on natural mineral drugs of this area can upgrade the translation rate of resource superiority and accelerate the development of local medical industry, especially, it can provide scientific data for founding the strategic design of Chinese traditional medicine's trademark of Jilin Changbai Mountain. Since the resource of mineral drugs can not be regenerated, it must be exploited scientifically, utilized reasonably and protected effectively its sustaining application.展开更多
Alveolar echinococcosis(AE)is a chronic zoonotic parasitic disease caused by infection with Echinococcus multilocularis.AE is associated with a high mortality rate and poses a significant threat to human health.The pr...Alveolar echinococcosis(AE)is a chronic zoonotic parasitic disease caused by infection with Echinococcus multilocularis.AE is associated with a high mortality rate and poses a significant threat to human health.The primary treatment for AE is surgical resection of the lesions;however,owing to its long incubation period and insidious disease progression,many patients are diagnosed only after the onset of complications such as liver cirrhosis,jaundice,and portal hypertension,which preclude curative surgical intervention.For patients who are unwilling or unable to undergo surgery,lifelong administration of anti-AE medications is necessary.Benzimidazole compounds,such as albendazole and mebendazole,are the current mainstays of treatment,offering good efficacy.Nevertheless,these medications primarily inhibit parasite proliferation rather than eradicate the infection,and their long-term use can lead to significant drug-related toxic effects.Consequently,there is an urgent need to develop new therapeutic strategies that convey better efficacy and reduce the adverse effects associated with current treatments.Recent advancements in AE therapy include novel synthetic compounds such as antiviral agents,antibiotics,antineoplastic agents,immunosuppressants,and antiangiogenic agents,as well as natural compounds derived from traditional Chinese and Tibetan medicine.These new drugs show promising clinical potential because they interfere with parasitic metabolic pathways and cellular structures.This review aims to discuss recent research on AE drug therapy,including mechanisms of action,dosing regimens,signalling pathways,and therapeutic outcomes,with a goal of providing new insights and directions for the development of anti-AE drugs and summarizing current advancements in AE pharmacotherapy.展开更多
1.The Current Situation
Facing China's accession to the WTO,our pharmaceutical industries must prepare to meet extremely strong competition,because 97% of the synthetic medicines and antibiotics marketed in the co...1.The Current Situation
Facing China's accession to the WTO,our pharmaceutical industries must prepare to meet extremely strong competition,because 97% of the synthetic medicines and antibiotics marketed in the country are copies of foreign products.展开更多
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxid...Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.展开更多
Aging is a process characterized by accumulating degenerative damages,resulting in the death of an organism ultimately.The main goal of aging research is to develop therapies that delay age-related diseases in human.S...Aging is a process characterized by accumulating degenerative damages,resulting in the death of an organism ultimately.The main goal of aging research is to develop therapies that delay age-related diseases in human.Since signaling pathways in aging of Caenorhabditis elegans(C.elegans),fruit flies and mice are evolutionarily conserved,compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human.Natural products have special resource advantage and with few side effect.Recently,many compounds or extracts from natural products slowing aging and extending lifespan have been reported.Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C.elegans or other species,and the prospect in developing antiaging medicine from natural products.展开更多
Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved the...Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved therapeutic drugs(including interferonalpha and nucleoside analogues)have their limitations.No drugs or therapeutic methods can cure hepatitis B so far.Therefore,it is urgently needed to discover and develop new anti-HBV drugs,especially nonnucleoside agents.Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms.In this review,the natural products against HBV are discussed according to their chemical classes such as terpenes,lignans,phenolic acids,polyphenols,lactones,alkaloids and flavonoids.Furthermore,novel mode of action or new targets of some representative anti-HBV natural products are also discussed.The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20years,especially novel skeletons and mode of action.Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date,scarcely any of them are found in the list of conventional anti-HBV drugs worldwide.Additionly,in anti-HBV mechanism of action,only a few references reported new targets or novel mode of action of antiHBV natural products.展开更多
Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous a...Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous advancements,bringing natural products to clinical use and discovering new therapeutic opportunities,yet the challenges remain ahead.With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies,we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility.This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches,new pharmacological models,and exploration of emerging directions to revitalize natural products search in cancer therapy.展开更多
Tropical diseases such as malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for a large number of deaths annually. Herbs are an excellent source of tropical medicines. Many advancements and discoverie...Tropical diseases such as malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for a large number of deaths annually. Herbs are an excellent source of tropical medicines. Many advancements and discoveries have taken place in the field of drug discovery but still, a major population of tropical diseases relies on herbal traditional medicine. There are some challenges related to policy implementation, efficacy, resistance and toxicity of tropical medicines. There are many tropical diseases such as such as schistosomiasis, leishmaniasis, African sleeping sickness, filariasis and chagas disease which are neglected because very few pharmaceutical companies have shown their interest in developing therapeutics against these diseases of poor people. There are many benefits associated with herbal medicine such as the cost of production, patient tolerance, large scale availability, efficacy, safety, potency, recyclability, and environment friendly. A large number of natural extracts such as curcumin, artemisinin, morphine, reserpine, and hypericin, are in use for treatment of different tropical diseases for a long time. The current review is to discuss the overview of tropical medicinal herbs, its scope and limitations in the modern drug discovery process.展开更多
基金supported by the Shandong Province Special Fund ‘Frontier Technology and Free Exploration’ from Laoshan Laboratory (No. 8-01)the National Natural Science Foundation of China (No. 42376116)+3 种基金the Special Funds of Shandong Province for Qingdao National Laboratory of Marine Science and Technology (No. 2022QN LM030003)the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University (No. CMEMR2023-B16)the National Key Research and Development Program of China (No. 2022YFC2601305)the Innovation Center for Academicians of Hainan Province, and the Fundamental Research Funds for the Central Universities (No. 202461059)
文摘Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.
文摘Drug discovery leading to robust and viable lead candidates’ remains a challenging scientific task, which is the transition from a screening hit to a drug candidate, requires expertise and experience. Natural products and their derivatives have been recognized for many years as a source of therapeutic agents and of structural diversity. However, in addition to their chemical structure diversity and their biodiversity, the development of new technologies has revolutionized the screening of natural products in discovering new drugs. Applying these technologies compensates for the inherent limitations of natural products and offers a unique opportunity to re-establish natural products as a major source for drug discovery. The present article attempts to describe the utilization of compounds derived from natural resources as drug candidates, with a focus on the success of these resources in the process of finding and discovering new and effective drug compounds, an approach commonly referred to as “natural product drug discovery”.
基金This work was supported by grants from the National Key Technology R & D Program “New Drug Innovation” of China (No. 2017ZX09101003-008-003)the Natural Science Foundation of China (No. 81773932).
文摘Natural active molecules are key sources of modern innovative drugs. Particularly, a great amount of natural active molecules have been reported to possess promising therapeutic effects on inflammatory diseases, including asthma, rheumatoid arthritis, hepatitis, enteritis, metabolic disorders and neurodegenerative diseases. However, these natural active molecules with various molecular structures usually exert anti-inflammatory effects through diversiform pharmacological mechanisms, which is necessary to be summarized systematically. In this review, we introduced the current major anti-inflammatory natural active molecules based on their chemical structures, and discussed their pharmacological mechanisms including anti-inflammatory molecular signaling pathways and potential target proteins, which providing a referential significance on the development of novel anti-inflammatory drugs, and also revealing new therapeutic strategies for inflammatory diseases.
基金the National Basic Research program of China (No.2005CB623903).
文摘A novel pH-sensitive nanoparticle drug delivery system (DDS) derived fl om natural polysaccharide pullulan for doxorubicin (DOX) release was prepared.Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups.DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate.This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX.Trans...
基金supported by the Internal Research Grant of Sanata Dharma University No.007/Penel./LPPM-USD/II/2022.
文摘Natural products include several diverse compounds that have been found to be effective against cancer.Discovering anticancer compounds in nature is a multistep and complex process that requires pre-clinical and clinical studies.Only a few of the available natural products are used to treat cancer since most of them have very high complexity and low bioavailability.Therefore,the process of anticancer drug discovery requires a straightforward and effective method to assess anticancer activity using in vitro assays.This review summarizes various cell-based assays and techniques used to measure cell viability,migration,and apoptosis,focusing in particular on the principles,mechanisms,advantages,and disadvantages of each assay to provide a preliminary platform for cancer drug discovery.
基金We thanked the National Natural Science Foundation of China(No.90813004,U0932602,20802083 and 973 Program No.2009CB522303 and No.2011CB915503)the State Key Laboratory of Phytochemistry and Plant Resources in West China(P2010-ZZ18)for financial support.
文摘A potential strategy for drug lead identification and in-active natural products re-discovery is elaborated.Starting from fifteen structurally diverse natural products,a focused library featured by Michael acceptors is constructed with IBX mediated oxidation.Biological assay on five tumor cell lines indicates that four Michael acceptors,8a,11a,12a,14a,are with improved cytotoxicity(3-10 folds more potent than the parent compounds),which merit further investigations.Further thiol-sensitive assay of the active hit 8a revealed that it was an irreversible Michael acceptor.The results suggest that the strategy is not only effective and relatively high discovery rate(28%),but also resource saving.
基金Part of this manuscript was supported by Grant from the Instituto Mexicano del Seguro Social,projects FIS/IMSS/PROT/G15/1414
文摘Drug-induced liver injury encompasses a spectrum of diseases ranging from mild biochemical abnormalities to acute liver failure; example of this scenery is hepatotoxicity caused by the first-line antituberculous drugs isoniazid, rifampin and pyrazinamide, which are basic for treatment of drug-sensible and drug-resistant tuberculosis. In the search for pharmacological alternatives to prevent liver damage, antitubercular drugs have been the subject of numerous studies and published reviews, a great majority of them carried out by Asian countries. At the same time, hepatoprotectors from plant source are now emerging as a possible alternative to counteract the toxic effects of these therapeutic agents. The present review aims to highlight the most recent studies on the subject, based information published in scientific databases such as Scopus and Pub Med.
文摘The 4 th Euro-Mediterranean Conference of Natural Products and Drug Discovery: Back to Mother Nature (Bio Nat-IV) was recently (from March 3 rd through 7 th, 2015) convened in Cairo and Sharm El-Sheikh along the Red Sea coast of Egypt. Overall, the meeting provided a platform for scientists from different nations to discuss emerging ideas that focused on cell signaling in cancer;the pathogenesis of autoimmune diseases;the identification and use of natural products as well as novel drug delivery approaches for the treatment of cancer,arthritis, diabetes, tuberculosis, fungal infection, etc.;and untapped or unconventional sources for natural products. This fourth in a row conference tried to bridge the gap not only between basic research and clinical applications, but also between developed nations and developing countries. With the continuing success of these past meetings, the fifth EuroMediterranean Conference of Natural Products and Drug Discovery(BioNat-V) is slated to be in February 2017.
文摘The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The higher plant-derived sesquiterpene,quinoline alkaloids,and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed.Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed.The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P.falciparum.To identify these novel scaffolds,we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data.Natural products were assigned to different structural classes using NPClassifier.To identify the most promising chemical scaffolds,we then correlated natural compound class with bioactivity and other data,namely(i)potency,(ii)resistance index,(iii)selectivity index and(iv)physicochemical properties.We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data.From this analysis we identified the top-ranked natural product pathway as the alkaloids.The top three ranked super classes identified were(i)pseudoalkaloids,(ii)naphthalenes and(iii)tyrosine alkaloids and the top five ranked classes(i)quassinoids(of super class triterpenoids),(ii)steroidal alkaloids(of super class pseudoalkaloids)(iii)cycloeudesmane sesquiterpenoids(of super class triterpenoids)(iv)isoquinoline alkaloids(of super class tyrosine alkaloids)and(v)naphthoquinones(of super class naphthalenes).Launched chemical space of these identified classes of compounds was,by and large,distinct from that of‘legacy’antimalarial drugs.Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs.These molecules have the potential to be developed into new antimalarial drugs.
文摘For the past 2 years,the coronavirus responsible for the COVID-19 infection has become a world pandemic,ruining the lives and economies of several nations in the world.This has scaled up research on the virus and the resulting infection with the goal of developing new vaccines and therapies.Natural products are known to be a rich source of lead compounds for drug discovery,including against infectious diseases caused by microbes(viruses,bacteria and fungi).In this review article,we conducted a literature survey aimed at identifying natural products with inhibitory concentrations against the coronaviruses or their target proteins,which lie below 10μM.This led to the identification of 42 compounds belonging to the alkaloid,flavonoid,terpenoid,phenolic,xanthone and saponin classes.The cut off concentration of 10μM was to limit the study to the most potent chemical entities,which could be developed into therapies against the viral infection to make a contribution towards limiting the spread of the disease.
基金This work was supported by Chongqing Natural Science Foundation General Project(2023NSCQ-MSX1633,CSTB2023NSCQ-MSX0393)Key Scientific and Technological Research Project of Chongqing Municipal Education Commission(KJ202302884457913,KJZD-K202302801)+2 种基金2022 Scientific Research Project of Chongqing Medical and Pharmaceutical College(ygz2022104)Scientific Research and Seedling Breeding Project of Chongqing Medical Biotechnology Association(cmba2022kyym-zkxmQ0003)Chongqing Natural Science Foundation(cstc2021jcyj-msxm3191,cstc2021jcyj-msxm0452),respectively.
文摘Hepatocellular carcinoma(HCC)remains a prevalent and challenging malignancy globally,characterized by its numerous causal factors and generally unfavorable prognosis.In the relentless pursuit of effective treatment modalities,natural products have emerged as a promising and relatively non-toxic alternative,garnering significant interest.The integration of natural products with contemporary medical research has yielded encouraging therapeutic outcomes in the management of HCC.This review offers a comprehensive overview of the causal factors underlying HCC,and the diverse treatment options available,and highlights the advancements made by natural products in anti-HCC research.Particularly,we provide an outline of the various types of natural products,their corresponding nomenclature,target molecules,and mechanisms of action that exhibit anti-HCC activities.Natural products are anticipated to play a pivotal role in future comprehensive treatment plans for liver cancer,potentially offering patients improved survival rates and an enhanced quality of life.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82003931,82204766 and 81374062)the Outstanding Youth Foundation of Hunan Provincial Education Department of China(Grant No.:20B445)+3 种基金the Hunan Youth Science and Technology Innovation Talents Project,China(Grant No.:2021RC3100)the Chinese Postdoctoral Science foundation(Grant No.:2021M690974)Changjiang Scholars Program in Ministry Education,People's Republic of China(Program No.:T2019133)the Scientific Research Project of Hunan Provincial Education Department(Project No.:21B0394).
文摘Over-expression of glutathione S-transferase(GST)can promote Cisplatin resistance in hepatocellular carcinoma(HCC)treatment.Hence,inhibiting GST is an attractive strategy to improve Cisplatin sensitivity in HCC therapy.Although several synthesized GST inhibitors have been developed,the side effects and narrow spectrum for anticancer seriously limit their clinical application.Considering the abundance of natural compounds with anticancer activity,this study developed a rapid fluorescence technique to screen“green”natural GST inhibitors with high specificity.The fluorescence assay demonstrated that schisanlactone B(hereafter abbreviated as C1)isolated from Xue tong significantly down-regulated GST levels in Cisplatin-resistant HCC cells in vitro and in vivo.Importantly,C1 can selectively kill HCC cells from normal liver cells,effectively improving the therapeutic effect of Cisplatin on HCC mice by downregulating GST expression.Considering the high GST levels in HCC patients,this compound demonstrated the high potential for sensitizing HCC therapy in clinical practice by down-regulating GST levels.
文摘There are rich natural resources of natural mineral drugs in eastern Jilin Province. Systematic resource investigation can elevate fractional conversion of this area' s mineral drugs resources superiority. Research on natural mineral drugs of this area can upgrade the translation rate of resource superiority and accelerate the development of local medical industry, especially, it can provide scientific data for founding the strategic design of Chinese traditional medicine's trademark of Jilin Changbai Mountain. Since the resource of mineral drugs can not be regenerated, it must be exploited scientifically, utilized reasonably and protected effectively its sustaining application.
基金Supported by the Guiding Program Project of Qinghai Provincial Health Commission,No.2020-wjzdx-27.
文摘Alveolar echinococcosis(AE)is a chronic zoonotic parasitic disease caused by infection with Echinococcus multilocularis.AE is associated with a high mortality rate and poses a significant threat to human health.The primary treatment for AE is surgical resection of the lesions;however,owing to its long incubation period and insidious disease progression,many patients are diagnosed only after the onset of complications such as liver cirrhosis,jaundice,and portal hypertension,which preclude curative surgical intervention.For patients who are unwilling or unable to undergo surgery,lifelong administration of anti-AE medications is necessary.Benzimidazole compounds,such as albendazole and mebendazole,are the current mainstays of treatment,offering good efficacy.Nevertheless,these medications primarily inhibit parasite proliferation rather than eradicate the infection,and their long-term use can lead to significant drug-related toxic effects.Consequently,there is an urgent need to develop new therapeutic strategies that convey better efficacy and reduce the adverse effects associated with current treatments.Recent advancements in AE therapy include novel synthetic compounds such as antiviral agents,antibiotics,antineoplastic agents,immunosuppressants,and antiangiogenic agents,as well as natural compounds derived from traditional Chinese and Tibetan medicine.These new drugs show promising clinical potential because they interfere with parasitic metabolic pathways and cellular structures.This review aims to discuss recent research on AE drug therapy,including mechanisms of action,dosing regimens,signalling pathways,and therapeutic outcomes,with a goal of providing new insights and directions for the development of anti-AE drugs and summarizing current advancements in AE pharmacotherapy.
文摘1.The Current Situation
Facing China's accession to the WTO,our pharmaceutical industries must prepare to meet extremely strong competition,because 97% of the synthetic medicines and antibiotics marketed in the country are copies of foreign products.
基金supported by the National Natural Science Foundation of China,No.82071442 (to LS)a grant from the Jilin Provincial Department of Finance,No.JLSWSRCZX2021-004 (to LS)。
文摘Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
基金the Natural Science Foundation of China(81671405 and 81370453)Natural Science Foundation of Yunnan province(2013FA045 and 2015FB172)Open Funds of Guangdong Key Laboratory of Marine Materia Medica.
文摘Aging is a process characterized by accumulating degenerative damages,resulting in the death of an organism ultimately.The main goal of aging research is to develop therapies that delay age-related diseases in human.Since signaling pathways in aging of Caenorhabditis elegans(C.elegans),fruit flies and mice are evolutionarily conserved,compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human.Natural products have special resource advantage and with few side effect.Recently,many compounds or extracts from natural products slowing aging and extending lifespan have been reported.Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C.elegans or other species,and the prospect in developing antiaging medicine from natural products.
基金Supported by Zhejiang Provincial Natural Science Foundation of China,No.LY14H310010Public Welfare Technology Applied Research Project of Zhejiang Province?Experimental Animal Science and Technology Project,No.2013C37020Key Project of Chinese Ministry of Education,No.212073
文摘Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus(HBV)are available for HBV patients,HBV infection is still a severe public health problem in the world.All the approved therapeutic drugs(including interferonalpha and nucleoside analogues)have their limitations.No drugs or therapeutic methods can cure hepatitis B so far.Therefore,it is urgently needed to discover and develop new anti-HBV drugs,especially nonnucleoside agents.Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms.In this review,the natural products against HBV are discussed according to their chemical classes such as terpenes,lignans,phenolic acids,polyphenols,lactones,alkaloids and flavonoids.Furthermore,novel mode of action or new targets of some representative anti-HBV natural products are also discussed.The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20years,especially novel skeletons and mode of action.Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date,scarcely any of them are found in the list of conventional anti-HBV drugs worldwide.Additionly,in anti-HBV mechanism of action,only a few references reported new targets or novel mode of action of antiHBV natural products.
文摘Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous advancements,bringing natural products to clinical use and discovering new therapeutic opportunities,yet the challenges remain ahead.With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies,we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility.This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches,new pharmacological models,and exploration of emerging directions to revitalize natural products search in cancer therapy.
文摘Tropical diseases such as malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for a large number of deaths annually. Herbs are an excellent source of tropical medicines. Many advancements and discoveries have taken place in the field of drug discovery but still, a major population of tropical diseases relies on herbal traditional medicine. There are some challenges related to policy implementation, efficacy, resistance and toxicity of tropical medicines. There are many tropical diseases such as such as schistosomiasis, leishmaniasis, African sleeping sickness, filariasis and chagas disease which are neglected because very few pharmaceutical companies have shown their interest in developing therapeutics against these diseases of poor people. There are many benefits associated with herbal medicine such as the cost of production, patient tolerance, large scale availability, efficacy, safety, potency, recyclability, and environment friendly. A large number of natural extracts such as curcumin, artemisinin, morphine, reserpine, and hypericin, are in use for treatment of different tropical diseases for a long time. The current review is to discuss the overview of tropical medicinal herbs, its scope and limitations in the modern drug discovery process.