期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
1
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) nd-fe-b permanent magnets numerical simulation microstructure magnetic properties
下载PDF
One-Step Synthesis of Magnetic Zeolite from Zinc Slag and Circulating Fluidized Bed Fly Ash for Degradation of Dye Wastewater
2
作者 Zhichao Han Yaojun Zhang Panyang He 《Journal of Renewable Materials》 SCIE EI 2020年第4期405-416,共12页
In this study,a magnetic P zeolite was directly synthesized by utilization of industrial solid wastes of zinc slag(ZS)and circulating fluidized bed fly ash(CFBFA)via one-step hydrothermal method.The effects of differe... In this study,a magnetic P zeolite was directly synthesized by utilization of industrial solid wastes of zinc slag(ZS)and circulating fluidized bed fly ash(CFBFA)via one-step hydrothermal method.The effects of different CFBFA/ZS ratios and hydrothermal times on the as-synthesized zeolite were investigated.The X-ray diffraction(XRD)and vibrating sample magnetometer(VSM)results indicated that the magnetic P zeolite possessed well-defined crystals and superparamagnetism.The as-prepared zeolite was employed as a Fenton-like solid catalyst for degradation of direct green B dye wastewater.It was discovered that the magnetic P zeolite took the advantage of rapid separation and efficient recovery under the external magnets in a solid-liquid reaction.The effects of the solution pH,the catalyst dosage,and the H_(2)O_(2)concentration on the degradation rate of direct green B dye wastewater were studied systematically.The results showed that the highest degradation of 96.3%was obtained and the magnetic P zeolite showed excellent stability after four cycles.Therefore,the magnetic P zeolite derived from industrial solid wastes had a potential application in wastewater treatment. 展开更多
关键词 magnetic zeolite solid wastes Fenton-like reaction dye degradation
下载PDF
Effect of Wood Waste on Acoustic and Magnetic Properties of Composite Bricks and Correlation between Sound Velocity and Magnetic Induction in These Bricks
3
作者 Gilbert Ganga Adolphe Kimbonguila Manounou +2 位作者 Narcisse Malanda Michel Dzondo Gadet Timothée Nsongo 《Open Journal of Composite Materials》 2020年第1期15-25,共11页
In the present study, kambala (botanical name: Chlorophora excelsa and Chlorophora regia) wood wastes were incorporated into stabilized earth bricks in order to test their acoustic insulation capacity of the walls;lea... In the present study, kambala (botanical name: Chlorophora excelsa and Chlorophora regia) wood wastes were incorporated into stabilized earth bricks in order to test their acoustic insulation capacity of the walls;leading to better waste management from the timber industry. Two methods have been applied to determine the influence of the wood waste content in the stabilized earth bricks, on the weakening of the level of noise reception coming from the environmental medium, in an apartment built with composite bricks (earth + wood chips + cement). This influence has also been analyzed on the magnetic field induced by these bricks. The results showed that the level of sound reception through these bricks decreases with increasing wood waste content regardless of the method used (from 110 dB to 68 dB, respectively for Φb = 0% and Φb = 8%). The kambala wood waste in cement-stabilized clay bricks induces a magnetic field that increases with the wood waste content;the high contents of the wood chips causing an increase in the magnetic permeability of the composite medium. The correlation between the noise level and the magnetic field of the bricks shows that the noise level declines with increasing magnetic induction of the bricks. 展开更多
关键词 Kambala TREE WOOD waste CLAY BRICK Sound Velocity magnetIC Field
下载PDF
Microstructure and magnetic properties of anisotropic Nd-Fe-B magnets prepared by spark plasma sintering and hot deformation 被引量:3
4
作者 李小强 李力 +3 位作者 胡可 陈志成 屈盛官 杨超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3142-3151,共10页
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem... Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis. 展开更多
关键词 nd-fe-b magnet hydrogen-disproportionation-desorption-recombination(HDDR) spark plasma sintering hot deformation magnetic property
下载PDF
Magnetic microstructure and coercivity mechanism of high performance Nd-Fe-B magnets 被引量:7
5
作者 ZHU Minggang LIU Xingmin FANG Yikun LI Zhengbang LI Wei 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期630-632,共3页
Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was ... Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model. 展开更多
关键词 nd-fe-b permanent magnets magnetic domains reversal of magnetism starting field theory
下载PDF
Electrochemical Corrosion Behavior of Nd-Fe-B Sintered Magnets in Different Acid Solutions 被引量:8
6
作者 郑精武 姜力强 陈巧玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期218-222,共5页
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time de... Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse. 展开更多
关键词 nd-fe-b sintered magnets CORROSION acid solution MICROSTRUCTURE rare earths
下载PDF
Recycle for Sludge Scrap of Nd-Fe-B Sintered Magnet as Isotropic Bonded Magnet 被引量:4
7
作者 Masahiro Itoh Masahiro Masuda +1 位作者 Shunji Suzuki Ken-ichi Machida 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第1期168-171,共4页
The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal componen... The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal component, the powders obtained were recycled as an isotropic magnetic powder by the melt spinning method. The magnetic properties of powders as recycled were inferior, especially for the coercivity value, due to the deletion of rare earth metals during the washing process. The adjustment of metal composition, i.e., the addition of Nd metal, at the melt spinning process improved the magnetic properties to be B r=~0.75 T, H cj=~0.93 mA·m -1, and (BH) max=~91 kJ·m -3. The magnetic properties of the bonded magnets prepared from the composition-adjusted powders were B r=~0.66 T, H cj=~0.92 mA·m -1, and (BH) max=~70 kJ·m -3, which are approximately comparable to the commercially available MQPB boned one (B r=~0.73 T, H cj=~0.79 mA·m -1, and (BH) max=~86 kJ·m -3). 展开更多
关键词 nd-fe-b sintered magnet recycling isotropic nd-fe-b bonded magnet melt-spinning method sludge scrap rare earths
下载PDF
Grain Growth Behavior in Sintered Nd-Fe-B Magnets 被引量:5
8
作者 刘湘涟 周寿增 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期329-335,共7页
The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described.The effects of sintering temperature and time,and alloy powder size and its distribution on grain growth process were analyze... The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described.The effects of sintering temperature and time,and alloy powder size and its distribution on grain growth process were analyzed.Hence,possible grain growth mechanisms in these magnets were qualitatively discussed.The Nd2Fe14B grain growth proceeded at quite a high rate in the initial 0~1 h of sintering and from then onwards the grain growth rate decreased.A large average particle size or a wide particle size distribution of initial alloy powders was found to remarkably accelerate the grain growth process and even result in the occurrence of abnormal grain growth.On the basis of experimental results,two grain growth mechanisms were considered to operate during sintering of Nd-Fe-B magnets,that is,dissolution and re-precipitation of Nd2Fe14B particles,and Nd2Fe14B particle growth by coalescence.It was believed that Nd2Fe14B particle growth by coalescence not only produced a large average grain size and a wide grain size distribution,but also was the fundamental reason for the formation of abnormally large grains in the microstructure of sintered Nd-Fe-B magnets. 展开更多
关键词 nd-fe-b magnet SINTERING grain growth powder size rare earths
下载PDF
Effect of bonding process on the properties of isotropic epoxy resin-bonded Nd-Fe-B magnets 被引量:3
9
作者 ZHANG Xiuhai XIONG Weihao 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期248-252,共5页
Bonded NdFeB magnets were prepared by compression molding. The effect of preparation technology on their magnetic and mechanical properties was studied through the analysis of density, Br, Hcj, (BH)max, bending stre... Bonded NdFeB magnets were prepared by compression molding. The effect of preparation technology on their magnetic and mechanical properties was studied through the analysis of density, Br, Hcj, (BH)max, bending strength, and compressive strength of the bonded magnets. The results showed that the magnetic properties decreased with increasing binder content, whereas the mechanical properties increased. Br and (BH)max increased with rising pressure, whereas Hcj decreased. For a fixed mass fraction of the binder, the optimal pressure was 620 MPa and the best thermosetting temperature was 160°C. These conditions made the bonded magnets have the optimal mechanical properties. Scanning electron microscopy (SEM) analyses of the fracture surfaces indicated that the epoxy resin bonded magnets exhibited brittle behavior. 展开更多
关键词 nd-fe-b bonded magnets magnetic properties mechanical properties brittle behavior epoxy resin
下载PDF
Thermal Stability of Low Cost Nd-Fe-B Magnets 被引量:2
10
作者 连法增 任建军 +2 位作者 艾禄 张效时 赵恒和 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第1期70-72,共3页
1.IntroductionSince the Nd-Fe-B magnets appearedin 1983,researchers,producers and users ofthe permanent magnetic materials have paidgreat attention to them.Because the mag-nets have low Curie temperature Tc andbad the... 1.IntroductionSince the Nd-Fe-B magnets appearedin 1983,researchers,producers and users ofthe permanent magnetic materials have paidgreat attention to them.Because the mag-nets have low Curie temperature Tc andbad thermal stability as well as easeoxidation,their applications are limited insome fields.The researchers are greatly in-terested in increase energy product 展开更多
关键词 low cost impure nd-fe-b magnets thermal stability
下载PDF
Magnetic properties and thermal stability of anisotropic bonded Nd-Fe-B magnets by warm compaction 被引量:1
11
作者 TAO Siwua LU Xina +4 位作者 TIAN Jianjun QU Xuanhui Y. Honkura H. Mitarai K. Noguchi 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期245-247,共3页
Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal tem... Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal temperature of the process, which was decided by the vis-cosity of the binders, was 110°C. With increasing pressure, the density of the magnets increased. When the pressure was above 700 MPa, the powder particles were destroyed and the magnetic properties decreased. The magnetic properties of the anisotropic bonded magnets were as follows: remanence Br=0.98 T, intrinsic coercivity iHc=1361 kA/m, and maximum energy product BHmax=166 kJ/m3. The magnets had excellent thermal stability because of the high coercivity and good squareness of demagnetization curves. The flux density of the magnets was 35% higher than that of isotropic bonded Nd-Fe-B magnets at 120°C for 1000 h. The flux density of the bonded magnets showed little change with regard to temperature. 展开更多
关键词 anisotropic magnets nd-fe-b magnets warm compaction process magnetic properties thermal stability
下载PDF
Temperature stability and microstructure of ultra-high intrinsic coercivity Nd-Fe-B magnets 被引量:1
12
作者 HU Zhihua CHENG Xinghua +2 位作者 ZHU Minggang LI Wei LIAN Fazeng 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期358-361,共4页
The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultan... The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity. 展开更多
关键词 nd-fe-b magnets intrinsic coercivity SINTERING REMANENCE temperature coefficient
下载PDF
Research of warm compaction technology on nylon bonded Nd-Fe-B magnets 被引量:1
13
作者 Xiuhai ZHANG Weihao XIONG Dameng YE Jun QU Zhenhua YAO 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第3期174-180,共7页
Warm compaction and room temperature compaction were applied to prepare bonded Nd-Fe-B magnets. The results indicated that the density of magnet was determined by the compaction pressure and warm compaction temperatur... Warm compaction and room temperature compaction were applied to prepare bonded Nd-Fe-B magnets. The results indicated that the density of magnet was determined by the compaction pressure and warm compaction temperature, whereas, the thermosetting temperature could hardly affect the density of magnet. The mechanical properties of magnets were the best when the thermosetting temperature was 200 ℃. The Br, Hob, and (BH)max of warm compaction magnet were higher than those of room compaction. When the warm compaction temperature and thermosetting temperature were invariable, the density of magnet increased with the increase of compaction pressure, which resulted in the increase of Br, Hcb, and (BH)max of magnet and the decrease of Hcj of magnet. When the warm compaction temperature and compaction pressure were invariable, the magnetic properties of magnets decreased with the increase of thermosetting temperature. The magnetic properties of warm compaction molding magnets were better than those of injection molding magnets. 展开更多
关键词 Bonded nd-fe-b magnets Warm compaction molding magnetic properties Mechanical properties
下载PDF
An Efficient Process for Recycling Nd-Fe-B Sludge as High-Performance Sintered Magnets 被引量:1
14
作者 Xiaowen Yin Ming Yue +8 位作者 Qingmei Lu Min Liu Feng Wang Yubing Qiu Weiqiang Liu Tieyong Zuo Shanshun Zha Xuliang Li Xiaofei Yi 《Engineering》 SCIE EI 2020年第2期165-172,共8页
Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for ... Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost. 展开更多
关键词 nd-fe-b GRINDING SLUDGE Recycled sintered magnetS CALCIUM reduction-diffusion Rare-earth-rich alloy doping
下载PDF
Effect of optimal aging treatment on magnetic performance and mechanical properties of sintered Nd-Fe-B permanent magnets 被引量:1
15
作者 丁霞 丁开鸿 +2 位作者 崔胜利 孙永聪 李木森 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期515-522,共8页
The magnetic performance and mechanical properties including hardness, brittleness, fracture toughness and strength characteristics of the as-sintered and the optimal aged Nd-Fe-B magnets were examined in this work. A... The magnetic performance and mechanical properties including hardness, brittleness, fracture toughness and strength characteristics of the as-sintered and the optimal aged Nd-Fe-B magnets were examined in this work. A new method of Vickers hardness indentation combined with acoustic emission was used to test the brittleness of the magnets.The results show that the magnetic properties of the magnets could be improved through aging treatment, especially the intrinsic coercive force. But it is accompanied by a decrease of strength and fracture toughness. Theoretical calculation confirms that acoustic emission energy accumulated count value could be used to characterize the material brittleness. The bending fracture morphologies of the as-sintered and the optimal aged Nd Fe B magnets were investigated with the emphasis on the relationship between mechanical properties and microstructure using a field emission scanning electron microscopy(FE-SEM). The research results indicate that the intergranular fracture is the primary fracture mechanism for both as-sintered and optimal aged Nd Fe B magnets. Aging treatment changes the morphology and distribution of the Nd-rich phases, reducing the sliding resistance between Nd_2Fe_(14)B main crystal grains and lowers the grain boundary strength, which is the main reason for the strength and fracture toughness decrease of the aged Nd-Fe-B magnets. 展开更多
关键词 nd-fe-b permanent magnets aging treatment mechanical property acoustic emission fracture analysis Nd-rich phase
下载PDF
Phase Formation and Magnetic Properties of Nanocomposite Nd-Fe-B Adjusted by Small Amount of Dy and Co
16
作者 T S Jang T W Lim H S Aum D H Lee M B Kim 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z2期89-94,共6页
In order to improve and stabilize the magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnetic alloys by a compositional adjustment, small amount of Dy and/or Co was added to Nd9Fe84B7 alloys. DTA analysis on the ... In order to improve and stabilize the magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnetic alloys by a compositional adjustment, small amount of Dy and/or Co was added to Nd9Fe84B7 alloys. DTA analysis on the amorphous of the alloys took place as the soft magnetic phases were crystallized, and then the hard magnetic Nd2Fe14B was precipitated from them. While α-Fe and a metastable 1:7 (TbCu7-type) phase were formed simultaneously in Dy and Co-free alloys, they were crystallized separately at different temperatures after Dy or Co was added. This phase separation occurred more clearly in the Dy-treated alloys and the other soft magnetic phase Fe3B was also stabilized by Dy and/or Co. The 1: 7 phase that was stabilized by Dy and/or Co was not eliminated at 700 ℃, decreasing magnetic properties of the alloys. It was eventually disappeared above 725 ℃, but Fe3B was not eliminated even at 750 ℃ when Dy was added more than 0.5 at% or Co was added more than 2.0 at%. Amount of Nd2Fe14B in the alloys tended to increase as Dy addition increased,whereas Co addition did not lead to any appreciable change in the ratio of α-Fe and Nd2Fe14B. Moreover, Dy addition apparently increased coercivity of an alloy while Co addition had a beneficial effect on remanence. The grains in the Dytreated alloys were usually finer than those in the Co-treated alloys. The grain size of both α-Fe and Nd2Fe14B in the alloys exhibiting mr ≥ 0.72 was in the range of 20 ~ 40 nm or even larger 50 nm, which is larger than the theoretical optimum size ( ~ 10 nm). Typical magnetic properties obtained from a Nd7.5Dy1.5Fe82.5Co1.5B7 alloy annealed for 12 min at 725 ℃were iHc=4.85 kOe, Br= 11.32 kG, (BH)max = 15.73 MGOe, and mr=0.73. 展开更多
关键词 NANOCOMPOSITE nd-fe-b magnetIC properties REMANENCE COERCIVITY
下载PDF
Reduction of Sensitivity to Sintering Temperature for Nd-Fe-B Magnets through Zr and Nb Additions
17
作者 Mi Yan Xigui Cui Lianqing Yu Tianyu Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期629-632,共4页
To reduce the sensitivity of grain growth to sintering temperature for improving property consistency of sintered Nd-Fe-B magnets, combined additions of Zr and Nb were investigated. It was found that when Zr content w... To reduce the sensitivity of grain growth to sintering temperature for improving property consistency of sintered Nd-Fe-B magnets, combined additions of Zr and Nb were investigated. It was found that when Zr content was increased to 0.07 at. pct, abnormal grain growth was effectively hindered even when the sintering temperature reached 1100℃. With combined additions of 0.07 at. pct Zr and 0.07 at. pct Nb, the sensitivity of grain growth to sintering temperature was greatly reduced consistency than the magnets containing no Zr and also improved. The magnets sintered at 1100℃ showed higher property Nb. In addition, the magnetic properties of magnets were also improved. 展开更多
关键词 Sintered nd-fe-b magnet magnetic properties CONSISTENCY Sintering temperature
下载PDF
MAGNETIZATION BEHAVIOR IN SINTERED Nd-Fe-B MAGNETS
18
作者 Li Dong(Central Iron & Steel Research Institute,Beijing 100081,P.R.China)K.J.Strnat H.F.Mildrum(University of Dayton,USA) 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第1期37-42,共6页
Magnetization and demagnetization curves and hysteresis loops applied different magnetizing.fields in sintered Nd-Fe-B and Nd-Dy-Fe-B magnets from thermally demagnetized and dc field-demagnetized states were investiga... Magnetization and demagnetization curves and hysteresis loops applied different magnetizing.fields in sintered Nd-Fe-B and Nd-Dy-Fe-B magnets from thermally demagnetized and dc field-demagnetized states were investigated at temperatures of up to 150℃.The first-quadrant remagnetization curves and the curves of coercive forces _MH_C versus rernagnetizing fietds H_m from dc field-demagnetized state at room temperature show a step around magnetizing field as absolute value of the maximum intrinsic coercivity.The steps of _MH_C-H_m curves shifted to lower remagnetizing fields and the shapes of magnetization curves changed from step type to precipitous type when temperature went up to 100~150℃ or after the specimen was thermally demagnetized at a temperature higher than the Curie temperature.The steep rise of knee coereivity with increasing magnetizing field is behind that of _MH_C.Note that the magnetic hardening in sintered Nd-Fe-B magnets is controlled by pinning of domain walls. 展开更多
关键词 DY FE magnetIZATION BEHAVIOR IN SINTERED nd-fe-b magnetS ND
下载PDF
Statistical model of magnetization reversal in Nd-Fe-B sintered magnets
19
作者 WANG Huijie ZHU Minggang LI Wei ZHANG Xin 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期521-525,共5页
Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The mag... Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets. 展开更多
关键词 sintered nd-fe-b magnets mechanical properties magnetization reversal abnormal grain growth
下载PDF
Structure and Magnetic Properties of Nd-Fe-B/α-Fe Nanocomposite Magnets by Co, Nb, Dy Substitutions
20
作者 Jian ZHANG Xaokai SUN +2 位作者 Wei LIU Baozhi CUI Xinguo ZHAO and Zhidong ZHANG(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期198-202,共5页
Structure and magnetic properties of the nanocomposite magnets prepared by mechanical al loying procedure with composition 55 wt pct Nd (Fe0.92B0.08)5.5+45 wt pct α-Fe,55 wt pct Nd(Fe0.8-.Co0.12Nbx B0.08)5.5+45 wt p... Structure and magnetic properties of the nanocomposite magnets prepared by mechanical al loying procedure with composition 55 wt pct Nd (Fe0.92B0.08)5.5+45 wt pct α-Fe,55 wt pct Nd(Fe0.8-.Co0.12Nbx B0.08)5.5+45 wt pct α-Fe (x=0.00, 0.01- 0.03) and 55 wt pct (Nd0.9Dy0.1) (Fe0.77Co0.12Nb0.03B0.08)5.5+45 wt pct α-Fe were studied. It was found that substitution of Co for Fe could significantly improve the permanent magnetic properties of the nanocomposite magnets and typically, the maximum magnetic energy product was increased from 104.8 kJ/m3 (13.1 MGOe) to 141.6 kJ/m3 (17.7 MGOe). In contrast to the case of conventional nominally single-phase magnets, the addition of Nb results in promoting the growth of α-Fe grain and is thus unfavorable for the improvement of permanent magnetic properties of the nanocomposites. Although the addition of Dy can increase the coercivity of the magnets, the increase of magnetic anisotropy of hard phase leads to decrease of the critical grain size of soft phase. Additionally it causes the difficulty of preparing the nanocomposites because it is more difficult to control the grain size of soft phase to meet the requirement of appropriate exchange coupling between hard and soft grains 展开更多
关键词 Fe Nanocomposite magnets by Co Dy Substitutions NB Structure and magnetic Properties of nd-fe-b Nd
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部