The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified br...The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified bricks (CSLB). Samples were formulated by mixing laterite, cement, and different percentages of PET (0%, 3%, 5%, and 7%) by volume. The bricks were produced using the M7MI Hydraform standard interlocking block and kept in the shade for a curing period of 28 days. The addition of 3% to 5% PET to the laterite stabilized with 10% cement results in a decrease in both dry and wet compressive strength, which is determined using the Controlab compression machine. However, the obtained results are in concordance with the standards. The thermal conductivity of CSLB, determined using the box method with the EI700 measurement cell, decreases as the PET content of the mixture increases. A decrease in bulk density from 1.67 to 1.58 g/cm<sup>3</sup> was observed.展开更多
Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are d...Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.展开更多
High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of w...High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.展开更多
Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) ...Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.展开更多
In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymeriz...In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.展开更多
Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high d...Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.展开更多
In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method ...In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies ha...The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke.展开更多
High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the do...High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.展开更多
Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w...Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.展开更多
This work reports a method for reducing the longevity of the polymer content of Municipal Solid Wastes (MSW) in the environment. In this approach biodegradability was imparted on polyethylene, a popular, low-cost comm...This work reports a method for reducing the longevity of the polymer content of Municipal Solid Wastes (MSW) in the environment. In this approach biodegradability was imparted on polyethylene, a popular, low-cost commodity polymer, using starch additives. Corn starch and cassava starch in varying proportions were compounded with suitably prepared polyethylene powder and compression-moulded in steel dies. Alongside tensile test, biodegradability tests were carried out by burying samples for 28 days in two different soil types with different pH, fungi and bacteria load. Cassava starch additions were found to be better at imparting biodegradability. Also, alkaline soil types with higher bacteria load seemed a more favourable environment for accomplishing biodegradation in the starch-polyethylene composites.展开更多
In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improv...In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.展开更多
Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulph...Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the ot...Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the other hand,self-sustaining smoldering is an emerging technical means to deal with sand/soil contaminated by organic matter.The high-temperature heat generated by smoldering can be used as a heat source for pyrolyzing waste polyethylene.Therefore,this study investigates numerically the pyrolysis of waste polyethylene driven by self-sustaining smoldering.A novel 4-step lumped kinetic model is proposed for simulating the pyrolysis of waste polyethylene.The results indicate that the operating parameters can determine the pyrolysis product yields by regulating the pyrolysis temperature and the volatile residence time.Note that higher temperatures and longer residence times favor the generation of shorter-chain pyrolysis products because of the intensified volatiles’secondary cracking.It can be concluded that a high interface-wall heat transfer coefficient(400 W m^(-2)K^(-1)),a low PE content(0.20),a high char concentration(2.4%),and a moderate air velocity(0.040 m s^(-1))are beneficial to oil yield.To some extent,this study may broaden the boundaries for the application of self-sustained smoldering-driven pyrolysis.展开更多
Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recyc...Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements.展开更多
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One o...The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.展开更多
文摘The present work investigated the effect of polyethylene terephthalate (PET) plastic waste on the physico-mechanical and thermal properties of cement-stabilized laterite bricks to see the durability of the modified bricks (CSLB). Samples were formulated by mixing laterite, cement, and different percentages of PET (0%, 3%, 5%, and 7%) by volume. The bricks were produced using the M7MI Hydraform standard interlocking block and kept in the shade for a curing period of 28 days. The addition of 3% to 5% PET to the laterite stabilized with 10% cement results in a decrease in both dry and wet compressive strength, which is determined using the Controlab compression machine. However, the obtained results are in concordance with the standards. The thermal conductivity of CSLB, determined using the box method with the EI700 measurement cell, decreases as the PET content of the mixture increases. A decrease in bulk density from 1.67 to 1.58 g/cm<sup>3</sup> was observed.
基金The Ministry of Natural Resources and Environment(No.TNMT.2022.05.04).
文摘Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.
基金supported by the sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C389)the Xinjiang University Doctoral Start-Up Foundation(No.620321029)the Science and Technology Planning Project of State Administration for Market Regulation(No.2022MK201).
文摘High-density polyethylene(HDPE)pipes have gradually become the first choice for gas networks because of their excellent characteristics.As the use of pipes increases,there will unavoidably be a significant amount of waste generated when the pipes cease their operation life,which,if improperly handled,might result in major environmental contamination issues.In this study,the thermal degradation of polyethylene materials is simulated for different pressures(10,50,100,and 150 MPa)and temperatures(2300,2500,2700,and 2900 K)in the framework of Reactive Force Field(ReaxFF)molecular dynamics simulation.The main gas products,density,energy,and the mean square displacement with temperature and pressure are also calculated.The findings indicate that raising the temperature leads to an increase in the production of gas products,while changing the pressure has an impact on the direction in which the products are generated;the faster the temperature drops,the less dense the air;both temperature and pressure increase impact the system’s energy conversion or distribution mechanism,changing the system’s potential energy as well as its total energy;the rate at which molecules diffuse increases with temperature,and decreases with pressure.The results of this investigation provide a theoretical basis for the development of the pyrolytic treatment of polyethylene waste materials.
基金supported by the National Natural Science Foundation of China(21902105,52274172)Shenzhen Science and Technology Program(JCYJ20210324094000001)Guangdong Basic and Applied Basic Research Foundation(2020A1515010471).
文摘Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,China
文摘In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.
文摘Impact behavior of polymers has received considerable attention in recent years,and much work based on fracture mechanic approaches has been carried out.In this paper,fracture behavior in large deformation of a high density polyethylene(HDPE)materials was investigated through experimental impact testing on single edge notched specimen(SENB)and by using theoretical and analytical fracture criteria concepts.Moreover,a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases(static and dynamic).The fractured specimens obtained from the Charpy impact test were characterized with respect to their fracture surfaces.Characteristic zones of the fracture surface can be assigned to different stages and mechanisms of the fracture process.Finally,for a better understanding of fracture and damage mechanisms and to provide the best estimation of fracture toughness in impact,an experimental approach based on microscopic observations(SEM)was used.
文摘In this research,the tensile properties'performance of compression moulded discontinuous randomized zalacca fibre/high-density polyethylene under critical fibre length was analysed by means of experimental method and micromechanical models.These investigations were used to verify the tensile properties models toward the effect of fibre length and volume fraction on the composites.The experimental results showed that the tensile properties of composites had significantly increased due to the enhancement of fibre length.On the contrary,a decline in the tensile properties was observed with the increase of volume fraction.A comparison was made between the available experimental results and the performances of Tsai-Pagano,Christensen and Cox-Krechel models in their prediction of composites elastic modulus.The results showed that the consideration of fibre's elastic anisotropy in the Cox-Krenchel model had yielded a good prediction of the composites modulus,nevertheless the models could not accurately predict the composites modulus for fibre length study.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.
基金financially supported by Yildiz Technical University Scientific Research Projects Coordination Department (No. 2011-07-02-KAP02)
文摘The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450℃ for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450℃ for 10 min using composite pellets containing 60% PET and 40% coke.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2019YFC1510802 and 2019YFC1804302)the National Natural Science Foundation of China (Grant No. 41504081)the Fundamental Research Funds for the Central Universities (Grant No. 2019B17214)。
文摘High-density polyethylene(HDPE)film leakage location detection is frequently accomplished using the double-electrode technique.The electric potential and potential difference are the main physical parameters in the double-electrode approach.Due to the impact of the complex geoelectric environment,the electric potential and the electric potential difference are not sensitive enough to respond to minimal leakage.The tiny leaking area cannot be precisely located using the electric potential and electric potential difference.Using the COMSOL Multiphysics software,this study created a standard geoelectric model of the double-electrode method.We calculated a new parameter—the G parameter through secondary electric potential difference—based on the response characteristics of the electric potential and the electric potential difference while the HDPEfilm is leaking.The experiment demonstrates that the G parameter is more sensitive than the electric potential and electric potential difference for detecting the leaking area of HDPE film.The G parameter is more effective at detecting leakage than the electric potential and electric potential difference.The results of this study can be used to locate HDPEfilm leakage areas in a landfill.
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
基金supported by the National Natural Science Foundation of China[31670573]the Innovation Training Program of Northeast Forestry University[201810225398].
文摘Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.
文摘This work reports a method for reducing the longevity of the polymer content of Municipal Solid Wastes (MSW) in the environment. In this approach biodegradability was imparted on polyethylene, a popular, low-cost commodity polymer, using starch additives. Corn starch and cassava starch in varying proportions were compounded with suitably prepared polyethylene powder and compression-moulded in steel dies. Alongside tensile test, biodegradability tests were carried out by burying samples for 28 days in two different soil types with different pH, fungi and bacteria load. Cassava starch additions were found to be better at imparting biodegradability. Also, alkaline soil types with higher bacteria load seemed a more favourable environment for accomplishing biodegradation in the starch-polyethylene composites.
文摘In this work, the effect of Bentonite (Nanoclay) on the mechanical and mor-phology properties of HDPE/Nanoclay composite pipe material was investi-gated. This led to the development of a composite material with improved me-chanical properties. The HDPE/nanoclay composites were produced using an injection moulding machine at 200?C and rotor speed of 50 rpm. The compati-bilizer used in this study was Polyethylene-graft-Maleic Anhydride. Different compositions of nanoclay reinforcements were prepared and added to HDPE resin. A particle size of 425 μm was used in proportions of 0%, 5%, 10%, 15%, and 20% on weight fraction basis. All the composites samples were characterized by Zwick Roell tensile testing machine and Scanning Election Microscopy (SEM). Experimental results obtained showed improvements in the tensile strength, and modulus at the expense of elongation. The maximum tensile strength and modulus was obtained at 10% filler composition. These enhanced properties are due to the homogenous dispersion of nanoclay in HDPE matrix, which is evident from the structure that was evaluated using SEM.
文摘Post-consumer polymeric wastes in form of low-density polyethylene (LDPE) can now be considered suitable as a precursor for the synthesis of low-cost activated carbon (AC). This study produced AC from LDPE using sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and potassium hydroxide (KOH) as the activating agent. The reaction conditions for pyrolysis were varied in the range of 0.50 - 2.00 M, 400<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C - 500<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C, and 45 - 60 minutes. Physico-chemical investigations reveal that AC yield is significantly dependent on both carbonization temperatures and time. The obtained optimum values of 446.50<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span>C and 51.09 mins gave a yield of 24% for the base-activated carbon. The high iodine numbers obtained strongly indicate the presence of large surface area and pore volumes is further confirmed using the Scanning Electron Microscopy (SEM) analysis which reveals the presence of pores on the external surface of the carbons. Fourier Transform Infrared Technique (FTIR) analysis further shows that the synthesized compounds are purely carbon with rich oxy-gen-surface complexes on the surface which is as a result of the introduction of the chemical oxidizing agents. The produced carbons were found to have high adsorption affinity for selected inorganic ions which are: Mn<sup>7+</sup>, Co<sup>2+</sup>, and Cr<sup>6+</sup>. Adsorption isotherm results show the adsorption process to be favourable with the Langmuir isotherm parameter RL having values of <1, while the Freudlich adsorption model was found to perfectly fit the data at selected adsorbent dosages and adsorbate concentrations. The pseu-do-second-order model provides the best correlation for the kinetic analysis. The acid-activated carbon was found to have better adsorption capacities than the base-activated carbon.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
基金supported by the China National Key Research and Development Plan Project(Grant No.2018YFA0702300)the National Natural Science Foundation of China(Grant Nos.51950410590 and52227813)。
文摘Polyethylene is the type of waste plastic that accounts for the most significant proportion of municipal solid waste.Waste polyethylene can be valorized via pyrolysis and produce value-added oil,gas,and char.On the other hand,self-sustaining smoldering is an emerging technical means to deal with sand/soil contaminated by organic matter.The high-temperature heat generated by smoldering can be used as a heat source for pyrolyzing waste polyethylene.Therefore,this study investigates numerically the pyrolysis of waste polyethylene driven by self-sustaining smoldering.A novel 4-step lumped kinetic model is proposed for simulating the pyrolysis of waste polyethylene.The results indicate that the operating parameters can determine the pyrolysis product yields by regulating the pyrolysis temperature and the volatile residence time.Note that higher temperatures and longer residence times favor the generation of shorter-chain pyrolysis products because of the intensified volatiles’secondary cracking.It can be concluded that a high interface-wall heat transfer coefficient(400 W m^(-2)K^(-1)),a low PE content(0.20),a high char concentration(2.4%),and a moderate air velocity(0.040 m s^(-1))are beneficial to oil yield.To some extent,this study may broaden the boundaries for the application of self-sustained smoldering-driven pyrolysis.
基金support from the Hong Kong Environment and Conservation Fund through ECF Project(84/2017)Science and Technology Project of Henan Provincial Department of Transportation(2020J6).
文摘Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements.
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
基金the supports provided by National Iranian Oil Engineering and Construction Company(NIOEC)。
文摘The oxidative desulfurization(ODS) process is one of the new desulfurization processes for the production of clean fuels. Despite the benefits of the ODS process, this process faces several important challenges. One of the most important challenges of this process is the management of a waste which is rich of sulfone compounds.In the present study, a new strategy which is the addition of waste to the bitumen with other solid waste such as high density polyethylene(HDPE) waste has been investigated. The experimental design method was applied to investigate the effect of addition of the sulfone and HDPE wastes to the properties of the bitumen blends including degree of penetration, softening point, and mass loss. It was found that the sulfone waste can be added to the bitumen as a softener. The results showed that several grades of bitumen including 50/60, 60/70, 85/100 can be produced through the addition of sulfone waste along with the HDPE waste to the base 60/70 bitumen.In general, the application of simple processes such as mixing the wastes with the bitumen can reduce the cost of waste management, considerably.